A sweat‐based flexible supercapacitor (SC) for self‐powered smart textiles and wearable systems is presented. The developed SC uses sweat as the electrolyte and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the active electrode. With PEDOT:PSS coated onto cellulose/polyester cloth, the SC shows specific capacitance of 8.94 F g−1 (10 mF cm−2) at 1 mV s−1. With artificial sweat, the energy and power densities of the SC are 1.36 Wh kg−1 and 329.70 W kg−1, respectively for 1.31 V and its specific capacitance is 5.65 F g−1. With real human sweat the observed energy and power densities are 0.25 Wh kg−1, and 30.62 W kg−1, respectively. The SC performance is evaluated with different volumes of sweat (20, 50, and 100 µL), bending radii (10, 15, 20 mm), charging/discharging stability (4000 cycles), and washability. With successful on‐body testing, the first demonstration of the suitability of a sweat‐based SC for self‐powered cloth‐based sensors to monitor sweat salinity is presented. With attractive performance and the use of body fluids, the presented approach is a safe and sustainable route to meet the power requirements in wearable systems.
This article presents the state of the field of large-area tactile sensing in robotics and prosthetics, particularly focusing on neural-like tactile data handling, energy autonomy, and advanced manufacturing based on printed electronics.
Flexible electronics has huge potential to bring revolution in robotics and prosthetics as well as to bring about the next big evolution in electronics industry. In robotics and related applications, it is expected to revolutionise the way with which machines interact with humans, real-world objects and the environment. For example, the conformable electronic or tactile skin on robot's body, enabled by advances in flexible electronics, will allow safe robotic interaction during physical contact of robot with various objects. Developing a conformable, bendable and stretchable electronic system requires distributing electronics over large non-planar surfaces and movable components. The current research focus in this direction is marked by the use of novel materials or by the smart engineering of the traditional materials to develop new sensors, electronics on substrates that can be wrapped around curved surfaces. Attempts are being made to achieve flexibility/stretchability in e-skin while retaining a reliable operation. This review provides insight into various materials that have been used in the development of flexible electronics primarily for e-skin applications.
In this work, we present a potentiometric pH sensor on textile substrate for wearable applications. The sensitive (thick film graphite composite) and reference electrodes (Ag/AgCl) are printed on cellulose-polyester blend cloth. An excellent adhesion between printed electrodes allow the textile-based sensor to be washed with a reliable pH response. The developed textile-based pH sensor works on the basis of electrochemical reaction, as observed through the potentiometric, cyclic voltammetry (100 mV/s) and electrochemical impedance spectroscopic (10 mHz to 1 MHz) analysis. The electrochemical double layer formation and the ionic exchanges of the sensitive electrode-pH solution interaction are observed through the electrochemical impedance spectroscopic analysis. Potentiometric analysis reveals that the fabricated textile-based sensor exhibits a sensitivity (slope factor) of 4 mV/pH with a response time of 5 s in the pH range 6–9. The presented sensor shows stable response with a potential of 47 ± 2 mV for long time (2000 s) even after it was washed in tap water. These results indicate that the sensor can be used for wearable applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.