COVID-19 is affecting healthcare resources worldwide, with lower and middle-income countries being particularly disadvantaged to mitigate the challenges imposed by the disease, including the availability of a sufficient number of infirmary/ICU hospital beds, ventilators, and medical supplies. Here, we use mathematical modelling to study the dynamics of COVID-19 in Bahia, a state in northeastern Brazil, considering the influences of asymptomatic/non-detected cases, hospitalizations, and mortality. The impacts of policies on the transmission rate were also examined. Our results underscore the difficulties in maintaining a fully operational health infrastructure amidst the pandemic. Lowering the transmission rate is paramount to this objective, but current local efforts, leading to a 36% decrease, remain insufficient to prevent systemic collapse at peak demand, which could be accomplished using periodic interventions. Non-detected cases contribute to a ∽55% increase in R0. Finally, we discuss our results in light of epidemiological data that became available after the initial analyses.
COVID-19 is now identified in almost all countries in the world, with poorer regions being particularly more disadvantaged to efficiently mitigate the impacts of the pandemic. In the absence of efficient therapeutics or large-scale vaccination, control strategies are currently based on non-pharmaceutical interventions, comprising changes in population behavior and governmental interventions, among which the prohibition of mass gatherings, closure of non-essential establishments, quarantine and movement restrictions. In this work we analyzed the effects of 707 governmental interventions published up to May 22, 2020, and population adherence thereof, on the dynamics of COVID-19 cases across all 27 Brazilian states, with emphasis on state capitals and remaining inland cities. A generalized SEIR (Susceptible, Exposed, Infected and Removed) model with a time-varying transmission rate (TR), that considers transmission by asymptomatic individuals, is presented. We analyze the effect of both the extent of enforced measures across Brazilian states and population movement on the changes in the TR and effective reproduction number. The social mobility reduction index, a measure of population movement, together with the stringency index, adapted to incorporate the degree of restrictions imposed by governmental regulations, were used in conjunction to quantify and compare the effects of varying degrees of policy strictness across Brazilian states. Our results show that population adherence to social distance recommendations plays an important role for the effectiveness of interventions and represents a major challenge to the control of COVID-19 in low- and middle-income countries.
Background Brazil has made great progress in reducing child mortality over the past decades, and a parcel of this achievement has been credited to the Bolsa Família program (BFP). We examined the association between being a BFP beneficiary and child mortality (1–4 years of age), also examining how this association differs by maternal race/skin color, gestational age at birth (term versus preterm), municipality income level, and index of quality of BFP management. Methods and findings This is a cross-sectional analysis nested within the 100 Million Brazilian Cohort, a population-based cohort primarily built from Brazil’s Unified Registry for Social Programs (Cadastro Único). We analyzed data from 6,309,366 children under 5 years of age whose families enrolled between 2006 and 2015. Through deterministic linkage with the BFP payroll datasets, and similarity linkage with the Brazilian Mortality Information System, 4,858,253 children were identified as beneficiaries (77%) and 1,451,113 (23%) were not. Our analysis consisted of a combination of kernel matching and weighted logistic regressions. After kernel matching, 5,308,989 (84.1%) children were included in the final weighted logistic analysis, with 4,107,920 (77.4%) of those being beneficiaries and 1,201,069 (22.6%) not, with a total of 14,897 linked deaths. Overall, BFP participation was associated with a reduction in child mortality (weighted odds ratio [OR] = 0.83; 95% CI: 0.79 to 0.88; p < 0.001). This association was stronger for preterm children (weighted OR = 0.78; 95% CI: 0.68 to 0.90; p < 0.001), children of Black mothers (weighted OR = 0.74; 95% CI: 0.57 to 0.97; p < 0.001), children living in municipalities in the lowest income quintile (first quintile of municipal income: weighted OR = 0.72; 95% CI: 0.62 to 0.82; p < 0.001), and municipalities with better index of BFP management (5th quintile of the Decentralized Management Index: weighted OR = 0.76; 95% CI: 0.66 to 0.88; p < 0.001). The main limitation of our methodology is that our propensity score approach does not account for possible unmeasured confounders. Furthermore, sensitivity analysis showed that loss of nameless death records before linkage may have resulted in overestimation of the associations between BFP participation and mortality, with loss of statistical significance in municipalities with greater losses of data and change in the direction of the association in municipalities with no losses. Conclusions In this study, we observed a significant association between BFP participation and child mortality in children aged 1–4 years and found that this association was stronger for children living in municipalities in the lowest quintile of wealth, in municipalities with better index of program management, and also in preterm children and children of Black mothers. These findings reinforce the evidence that programs like BFP, already proven effective in poverty reduction, have a great potential to improve child health and survival. Subgroup analysis revealed heterogeneous results, useful for policy improvement and better targeting of BFP.
Objective: To analyze the prevalence of common mental disorders (CMD) assessed with the Self Reporting Questionnaire (SRQ-20), using the established cutoff point, and comparing it with the results of a joint correspondence factor analysis (CFA) and cluster analysis and of a latent class analysis (LCA). Methods: A cross-sectional study was carried out in an urban sample of 1,095 women aged 19 to 55 years. Joint CFA-cluster analysis and LCA were used. Results: We found a high prevalence of CMD, regardless of classification method (37.6% when using the cutoff point; 44.4% and 52% for LCA and joint CFA-cluster, respectively). The alternative analysis strategies describe the cases more efficiently when compared to the traditional cutoff method, especially regarding more severe symptoms. Both alternative strategies also provide a description of the SRQ-20 dimensions in their particularities, which may be useful for the planning and implementation of specific actions in a given population. Conclusion: The SRQ-20 cutoff point seems to underestimate the magnitude of CMD among women. The alternative methods of analysis presented herein highlight the different possibilities of using this important instrument of screening for mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.