This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass) and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm) and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC) was analyzed by FTIR. Biaxial flexural strength (BFS) was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey's test (p = 0.05). The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.
This study evaluated the effect of the combination of two dimethacrylate-based monomers [bisphenol A diglycidyl dimethacrylate (BisGMA) or bisphenol A ethoxylated dimethacrylate (BisEMA)] with diluents either derived from ethylene glycol dimethacrylate (ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate) or 1,10-decanediol dimethacrylate (D3MA) on network characteristics and mechanical properties of neat resin and composite materials. The degree of conversion, maximum rate of polymerization and water sorption/solubility of unfilled resins and the flexural strength and microhardness of composites (after 24 h storage in water and 3 months storage in a 75 vol% ethanol aqueous solution) were evaluated. Data were analyzed with two-way ANOVA and Tukey's test (α = 0.05). The higher conversion and lower water sorption presented by BisEMA co-polymers resulted in greater resistance to degradation in ethanol compared with BisGMA-based materials. In general, conversion and mechanical properties were optimized with the use of long-chain dimethacrylate derivatives of ethylene glycol. D3MA rendered more hydrophobic materials, but with relatively low conversion and mechanical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.