Mammalian ABCB1 P-glycoprotein is an ATP-dependent efflux pump with broad substrate specificity associated with cellular drug resistance. Homologous to this role in mammalian biology, the P-glycoprotein of agents of neglected tropical diseases (NTDs) mediates the emergence of multidrug-resistance phenotypes. The clinical and socioeconomic implications of NTDs are exacerbated by the lack of research interest among Big Pharma for treating such conditions. This work aims to characterise P-gp homologues in certain agents of key NTDs, namely (1) Protozoa: Leishmania major, Trypanosoma cruzi; (2) Helminths: Onchocerca volvulus, Schistosoma mansoni. Based on structural modelling of the organismal P-gp homologues, potential antibiotics targeting these structures were identified based on similarity and repurposing of existing drugs. Docking studies of the Pgp receptor-antibiotic ligand complexes were carried out and the most tenable target-ligand conformations assessed. The interacting residues were identified, and binding pockets studied. The in silico studies yielded measurements of the relative efficacy of the new drugs, which need experimental validation. Our studies could lay the foundation for the development of effective synergistic or new therapies against key neglected tropical diseases. The potential mechanisms of multidrug resistance emergence in E. coli were examined.
Mammalian ABCB1 P-glycoprotein is an ATP- dependent efflux pump with broad substrate specificity associated with cellular drug resistance. Homologous to this role in mammalian biology, the P-glycoprotein of agents of neglected tropical diseases (NTDs) mediates the emergence of multidrug-resistance phenotypes. The clinical and socioeconomic implications of NTDs are exacerbated by the lack of research interest among Big Pharma for treating such conditions. This work aims to characterise P-gp homologues in certain agents of key NTDs, namely Protozoa: Leishmania major, Trypanosoma cruzi;Helminths: Onchocerca volvulus, Schistosoma mansoni.PSI-BLAST searches against the genome of each of these organisms confirmed the presence of P-gp homologues. Each homologue was aligned against five P-gp sequences of known structure, to identify the most suitable template based on sequence homology, phylogenetic nearest neighbor, and query coverage. Antibiotics used in the current line of therapy against each of these pathogens were identified using PubChem and their SMILES structures were converted to PDB using BABEL software. Potential antibiotics to test against the set of FDA-approved antibiotics were identified based on similarity to the chemical class of the known drugs and repurposing of the existing drugs. Docking studies of the respective modelled Pgp structures and the set of antibiotic ligands were carried out using AutoDock and the most tenable target-ligand conformations were assessed. The interacting residues within 4.5 Å of the ligand were identified, and the binding pockets were studied. The relative efficacy of the new drugs and the interacting pump residues were identified. Our studies could lay the foundation for the development of effective synergistic or new therapies against key neglected tropical diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.