The development of a variety of nanoscale applications 1, 2 requires the fabrication and control of atomic [3][4][5] or molecular switches 6, 7 that can be reversibly operated by light 8 , a short range force 9, 10 , electric current 11,12 or some other external stimulus [13][14][15] . In order for such molecules to be used as electronic components, they should be directly Fig. 1d and f) at ambient temperatures, the process being called tautomerization 24,
Silica films grown on Pd(100) were characterized by Auger electron spectroscopy, low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). While no evidence of long-range order could be detected for films grown below 600 K, STM images of these films nevertheless revealed flat surfaces through which the step-terrace structure of the substrate could be seen. Annealing the films in 10 −6 Torr of O 2 above 975 K resulted in crystalline bilayers that produced hexagonal LEED patterns with a periodicity twice that of the substrate and with one of the overlayer close-packed directions paralleling Pd [011]. The extent of the crystalline domains was limited to typically five repeat units along two of the three close-packed directions of the film but was tens of repeat units long along the third. The lattice matching to the substrate expands the spacing in the bilayer on Pd(100) compared to bulk crystalline SiO 2 and bilayers observed on other substrates; as a consequence, it is suggested that the regular domain boundaries that form help relieve stress. The dominant features in high-resolution STM images were dark pores surrounded by six other pores; consistent with prior studies, these features are assigned to six-membered rings of corner-sharing SiO 4 tetrahedra. Elongation of the pores at the domain boundaries is attributed to insertion of edge-sharing tetrahedra into the rings. Ab initio calculations on freestanding bilayers were performed to understand the effect of the substantial strain on the growth and structure of the film. The results indicate that relaxation orthogonal to the commensurate direction can greatly reduce the strain energy; as a consequence, the square substrate promotes epitaxial growth of crystalline SiO 2 by providing an incommensurate direction along which the film can relax.
We investigate the adsorption of submicrometer bulk-synthesized polymer dumbbells to oil-water interfaces using freeze-fracture, shadow-casting (FreSCa) cryo-scanning electron microscopy. We find that the dumbbells are amphiphilic and adsorb to the interface with a preferred orientation. Most particles adsorb in a tilted configuration, with the polar and apolar lobes intersecting the interface and pointing toward the water and oil, respectively. Some particles adsorb with only one lobe attached to the interface. Moreover, we find that each lobe has a preferred angle of contact with the interface, identical in all observed configurations. A simple geometrical calculation using these contact angles accurately predicts the dominant configuration of particles at the interface. This calculation provides insight into how the shape and composition of dumbbells can be tuned to stand upright and pack efficiently on curved interfaces.
Protein adsorption and assembly at interfaces provide a potentially versatile route to create useful constructs for fluid compartmentalization. In this context, we consider the interfacial assembly of a bacterial biofilm protein, BslA, at air-water and oil-water interfaces. Densely packed, high modulus monolayers form at air-water interfaces, leading to the formation of flattened sessile water drops. BslA forms elastic sheets at oil-water interfaces, leading to the production of stable monodisperse oil-in-water microcapsules. By contrast, water-in-oil microcapsules are unstable but display arrested rather than full coalescence on contact. The disparity in stability likely originates from a low areal density of BslA hydrophobic caps on the exterior surface of water-in-oil microcapsules, relative to the inverse case. In direct analogy with small molecule surfactants, the lack of stability of individual water-in-oil microcapsules is consistent with the large value of the hydrophilic-lipophilic balance (HLB number) calculated based on the BslA crystal structure. The occurrence of arrested coalescence indicates that the surface activity of BslA is similar to that of colloidal particles that produce Pickering emulsions, with the stability of partially coalesced structures ensured by interfacial jamming. Micropipette aspiration and flow in tapered capillaries experiments reveal intriguing reversible and nonreversible modes of mechanical deformation, respectively. The mechanical robustness of the microcapsules and the ability to engineer their shape and to design highly specific binding responses through protein engineering suggest that these microcapsules may be useful for biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.