The increasing skill mismatch in manufacturing workforce is raising demand for training opportunities to cope with advanced manufacturing systems. To maintain production and adjust quickly to technological transformation, innovative work-based learning approaches are emphasized. Intelligent machines are becoming capable of interaction and collaboration with humans. They not only introduce a new type of learnable workforce to manufacturing but may open opportunities to enhance learning of all learners. Symbiotic relationships of humans and machines have wide potential for human-centric manufacturing (aka Industry 5.0). Moreover, connecting smart devices and deploying self-learning solutions is envisioned to increase flexibility of manufacturing, thus changing work division between humans and machines. Where humans and machines collaborate, the term Reciprocal Learning has been coined to describe the process of bidirectional learning. While a definition of Reciprocal Learning exists the boundary conditions of the concept are still ambiguous. In this paper, a framework for Reciprocal Learning in Human-Machine Collaboration for Industry 5.0 is presented to clarify what it is and what it isn’t. The approach is based on a multi-agent system perspective, comprising human and machine agents. Finally, an outlook on future research is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.