Monitoring and managing potential infected patients of COVID-19 is still a great challenge for the latest technologies. In this work, IoT based wearable monitoring device is designed to measure various vital signs related to COVID-19. Moreover, the system automatically alerts the concerned medical authorities about any violations of quarantine for potentially infected patients by monitoring their real time GPS data. The wearable sensor placed on the body is connected to edge node in IoT cloud where the data is processed and analyzed to define the state of health condition. The proposed system is implemented with three layered functionalities as wearable IoT sensor layer, cloud layer with Application Peripheral Interface (API) and Android web layer for mobile phones. Each layer has individual functionality, first the data is measured from IoT sensor layer to define the health symptoms. The next layer is used to store the information in the cloud database for preventive measures, alerts, and immediate actions. The Android mobile application layer is responsible for providing notifications and alerts for the potentially infected patient family respondents. The integrated system has both API and mobile application synchronized with each other for predicting and alarming the situation. The design serves as an essential platform that defines the measured readings of COVID-19 symptoms for monitoring, management, and analysis. Furthermore, the work disseminates how digital remote platform as wearable device can be used as a monitoring device to track the health and recovery of a COVID-19 patient.
Due to the recent trend of intelligent systems and their ability to adapt with varying conditions, deep learning becomes very attractive for many researchers. In general, neural network is used to implement different stages of processing systems based on learning algorithms by controlling their weights and biases. This chapter introduces the neural network concepts, with a description of major elements consisting of the network. It also describes different types of learning algorithms and activation functions with the examples. These concepts are detailed in standard applications. The chapter will be useful for undergraduate students and even for postgraduate students who have simple background on neural networks.
COVID-19 pandemic seriousness is making the whole world suffer due to inefficient medication and vaccines. The article prediction analysis is carried out with the dataset downloaded from the Application peripheral interface (API) designed explicitly for COVID-19 quarantined patients. The measured data is collected from a wearable device used for quarantined healthy and unhealthy patients. The wearable device provides data of temperature, heart rate, SPO 2 , blood saturation, and blood pressure timely for alerting the medical authorities and providing a better diagnosis and treatment. The dataset contains 1085 patients with eight features representing 490 COVID-19 infected and 595 standard cases. The work considers different parameters, namely heart rate, temperature, SpO 2 , bpm parameters, and health status. Furthermore, the real-time data collected can predict the health status of patients as infected and non-infected from measured parameters. The collected dataset uses a random forest classifier with linear and polynomial regression to train and validate COVID-19 patient data. The google colab is an Integral development environment inbuilt with python and Jupyter notebook with scikit-learn version 0.22.1 virtually tested on cloud coding tools. The dataset is trained and tested in 80% and 20% ratio for accuracy evaluation and avoid overfitting in the model. This analysis could help medical authorities and governmental agencies of every country respond timely and reduce the contamination of the disease. The measured data provide a comprehensive mapping of disease symptoms to predict the health status. They can restrict the virus transmission and take necessary steps to control, mitigate and manage the disease . Benefits in scientific research with Artificial Intelligence (AI) to tackle the hurdles in analyzing disease diagnosis . The diagnosis results of disease symptoms can identify the severity of the patient to monitor and manage the difficulties for the outbreak caused.
Wavelet analysis is the recent development in applied mathematics. For several applications, Fourier analysis fails to provide tangible results due to non-stationary behavior of signals. In such situation, wavelet transforms can be used as a potential alternative. The book chapter starts with the description about importance of frequency domain representation with the concept of Fourier series and Fourier transform for periodic, aperiodic signals in continuous and discrete domain followed by shortcoming of Fourier transform. Further, Short Time Fourier Transform (STFT) will be discussed to induce the concept of time frequency analysis. Explanation of Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT) will be provided with the help of theoretical approach involving mathematical equations. Decomposition of 1D and 2D signals will be discussed suitable examples, leading to application concept. Wavelet based communication systems are becoming popular due to growing multimedia applications. Wavelet based Orthogonal Frequency Division Multiplexing (OFDM) technique and its merit also presented. Biomedical signal processing is an emerging field where wavelet provides considerable improvement in performance ranging from extraction of abnormal areas and improved feature extraction scheme for further processing. Advancement in multimedia systems together with the developments in wireless technologies demands effective data compression schemes. Wavelet transform along with EZW, SPIHT algorithms are discussed. The chapter will be a useful guide to undergraduate and post graduate who would like to conduct a research study that include wavelet transform and its usage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.