Abstrak Pada artikel ini kami mengevaluasi bagaimana implementasi algoritma machine learning k-Nearest Neighbors (kNN) pada data spektroskopi gamma beresolusi rendah. Penelitian ini bertujuan untuk mengetahui bagaimana performa kNN dalam mempelajari data tersebut. Kami melakukan berbagai variasi, yaitu: jumlah data training, jumlah data tes, jenis metric, dan nilai k untuk memperoleh performa terbaik dari algoritma ini. Data spektroskopi gamma diambil menggunakan sintilator NaI(Tl) Leybold Didactic dengan resolusi energi sebesar 10.9 keV per channel. Hasil variasi menunjukkan bahwa algoritma kNN memberikan hasil prediksi klasifikasi radioisotop yang sangat fluktuatif. Abstract In this paper we evaluate the implementation of a machine learning algorithm namely k-Nearest Neighbors (kNN) on low resolution gamma spectroscopy data. The aim is to provide the information of how well the algorithm performs on learning the data. We did the variation of number of training and test data, type of metric used, and values of k in order to see the best performance of the algorithm. The gamma spectroscopy data were taken using NaI(Tl) scintillator made by Leybold Didactic with resolution of 10.9 keV per channel. The variations show that the kNN algorithm produce significantly fluctuating accuracy to the prediction of radioisotope class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.