Current study reports a simple and one-pot synthesis of zinc oxide nanoparticles (ZnONPs) using an aqueous extract of Solanum torvum and evaluation of its toxicological profile (0.5% w/w and 1.0% w/w) in Wistar albino rats with respect to the biochemical index. The nanoparticles were characterized using ultraviolet-visible spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction technique. Dynamic light scattering (DLS) and zeta potential of synthesized nanoparticles were analyzed to know the average size and stability of particles. Synthesized nanoparticles were stable, discreet, and mostly spherical, and size of particles was within the nanometre range. Biochemical markers of hepatic and renal functions were measured. Zinc oxide nanoparticles significantly decreased serum uric acid level (p < 0.001) in a dose-dependent manner, while the serum alkaline phosphatase level was increased at the two test doses. The level of alanine transaminase was increased after exposure for 28 days (p < 0.05). This study concludes that biogenic zinc oxide nanoparticles-infused hydrogel applied dermatologically could affect hepatic and renal performance in rats, and there was an observed cumulative toxicological effect with time of exposure.
Microcrystalline cellulose (MCC) derived from Saccharum officinarum stem was evaluated for its powder flow and compaction properties in order to assess its suitability as a potential direct compression excipient in tablet formulations. Alpha (α) cellulose obtained from different sodium hydroxide and bleaching treatments of dried shred S. officinarum stem pulp was hydrolyzed with 2.5 N hydrochloric acid (2.5 N HCl) to obtain MCC which was coded MCC-Sacc. This was compared with a commercial brand, Avicel PH 102. The results of powder flow parameters such as bulk, tapped and particle densities (0.41 ± 0.01, 0.54 ± 0.01 and 1.52 ± 0.10 g/mL respectively), porosity (78.69 ± 0.20 % ), Carr's index (31.47 ± 0.75 %), Hausner's quotient (1.47) and angle of repose (31.00 ± 1.00 °) indicate poor flowability. Kawakita model assessment of powder showed good densification and cohesiveness. Compacts of MCC-Sacc showed good uniformity of weight, friability, disintegration and mechanical strength. The Heckel model showed good plasticity and slippage of the material. Values obtained were comparable to Avicel PH 102 in terms of compressibility and mechanical strength, hence MCC-Sacc has a good potential for use as a pharmaceutical excipient in the direct compression method of tablet formulation.
The effect of drying method, a process variable, on the powder and compaction properties of microcrystalline cellulose (MCC) obtained from the partial acid hydrolysis of bleached alpha (α) cellulose content of matured linters of Gossypium herbaceum (GH) was investigated. A portion of the wet MCC obtained was fluid bed dried at 60 ± 1 ºC, inlet air of 30 m 3 min-1 for 3 h (coded MCC-GossF). The second portion was lyophilized at-45 ± 2 ºC for 6 h (coded MCC-GossL). The physicochemical, scanning electron micrographs, X ray diffraction patterns and micromeritic properties of the derived MCCs were determined using standard methods. The cohesiveness and compactibility of the powders were investigated using Kawakita model while the deformation and compressibility pattern were determined using Heckel model. Avicel ® PH 102 (AV-102) was used as comparing standard. Ash values of < 2%, pH (6.54 ± 0.23 to 6.58 ± 0.08), degree of polymerization, DP (231.50) was obtained. MCC-GossF had higher moisture content, swellability, better flow indices, and lesser porosity than MCC-GossL. Kawakita model demonstrated good consolidation and compactibility for both powders. Compacts of MCC-GossL were significantly (p < 0.05) harder than those of MCC-GossF. Heckel analysis demonstrated good compressibility and deformation pattern that was comparable with AV-102. Compacts of MCC-GossL had better mechanical and tablet compression properties than MCC-GossF. Method of drying significantly (p < 0.05) affected the powder and compaction properties of GH MCC.
This study is aimed at evaluating the disintegrant properties of starches obtained from cassava (Manihot esculenta), sweet potato (Ipomoea batatas) and yellow corn (Zea mays). Matured tubers of cassava and potato were peeled, cut into smaller pieces, wet milled and their slurries washed severally with distilled water to obtain cassava and potato starches respectively. Matured seeds of yellow corn were steeped in distilled water for 24 h, wet milled and washed to separate the starch from the cellulose. The starches were dried at 50 ˚C after which they were characterized using standard methods. The starches at 10 % w/w were applied as disintegrants in the formulation of metronidazole tablets using wet granulation technology. Corn starch (British Pharmacopoeia) at 10 % w/w was used as comparing standard. The ibuprofen granules were evaluated for their micromeritic properties and thereafter compressed into ibuprofen tablets. Evaluation of the ibuprofen tablets for their physical properties, assay and dissolution studies were done using British Pharmacopoeia methods. Results showed that the materials extracted were starches, and they had a poor flow. The ibuprofen granules were flowable and compressible. Ibuprofen tablets compressed from these granules had good physical properties: minimal weight variation (604.00 ± 0.04 – 606.00 mg ± 0.03%), hardness (5.32 ± 0.41 – 6.33 ± 0.64 kgF), disintegration time < 15.00 min and friability < 1.00%. Assay and dissolution of metronidazole from the tablets complied with British Pharmacopoeia criteria. Cassava, potato, and yellow corn starches served as good disintegrants in ibuprofen tablet formulations.
Keywords: Disintegrant, starch, cassava, potato, corn, ibuprofen tablets
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.