Conducting polymer actuators such as polypyrrole (PPy) microactuators are interesting candidates to drive autonomous microrobotic devices that require low weight and low power. Simple PPy tri-layer bending type microactuators that operate in air have been demonstrated previously but they lack individual control and had problems with short circuiting due to electrical connections. The lack of micropatterning methods and proper interfacing are currently major obstacles in the development of PPy tri-layer microactuators. Here, we report for the first time methods for successfully patterning and interfacing of such tri-layer PPy microactuators. The PPy tri-layer actuators were patterned using adapted microfabrication technology including photolithography. The interface was based on a flexible printed circuit board comprising the electronic circuit into which the actuator unit was embedded. It showed that the microfabricated tri-layer actuators functioned as good as the normally fabricated actuators. The new interface seemed to actually improve the actuator performance. This interfacing method could also be applied to other electroactive polymer devices, such as ion polymer metal composites (IPMC) and dielectric elastomers (DE).
We are currently developing a rang based on polypyrrole (PPy) tri-layer m function in air. Here, we present re microfabrication and patterning photolithography for both thick, membr poly(vinylidene difluoride) (PVDF) ba actuators. We fabricated monolithi articulated actuator devices, i.e. compr controllable actuators. We also introduc such PPy actuators based on a flexib board, comprising the electrical contact actuator device was inserted.Compartive evaluations show microfabricated tri-layer actuators funct the normally fabricated actuators. Th seemed to actually improve the actuator KEYWORDSPolypyrrole, poly(vinylidene difl microactuators, patterning, interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.