Managing supply chain performance is essential for value generation to stakeholders. Nonetheless, this process has become overly complicated due to environmental concerns that lead to policy changes, customer preferences, and business activities. Reverse logistics is an environmentally friendly practice that can be critical in improving the environmental performance of construction operations. This paper examines the perceived role of reverse logistics practices on supply chain performance criteria—for example, cost, quality, time, flexibility, and environment. Semistructured in‐depth interviews were conducted with 15 senior industry experts from South East Queensland, Australia. Interview transcripts were analyzed by coding, categorizing, and identifying the interconnected relationships among concepts. In general, the experts perceive that reverse logistics practices significantly reduce the sourcing cost of materials compared with new materials. When used materials meet industry specifications, they are expected to have a similar performance without affecting the construction time or the overall quality of the project while protecting the environment. Nevertheless, the flexibility is found to be somewhat difficult. It is likely that reverse logistics can be instrumental in construction should the industry uptake be substantial with an emphasis on used material quality and acceptance criteria. Hence, a quantitative analysis is encouraged for future research.
Most of the construction materials still go to landfill after structures are demolished. This causes issues in human health, ecosystem preservation, and excessive resource consumption compared to RL options. Hence, recovering material value through reverse logistics (RL) is important to lessen the environmental and social burden. Embodying RL practices into strategic level decisions derives long-term and sustainable advantages. Although the most common RL option in construction seems to be recycling, it requires an additional energy and material intensive process. Therefore, recycling should be the last preference among other RL options. The hypothesis of this study is that alternative RL strategies provide more environmental benefits than recycling, the most common RL method, and traditional landfilling. The hypothesis was tested through assessment of the environmental impact of RL options in the construction sector. A life cycle assessment (LCA) with ReCipe2016 Midpoint and Endpoint assessment method was conducted for a bridge construction supply chain. Different end-of-life scenarios such as reuse, remanufacture, recycle, and landfill scenarios were assessed using SimaPro software. This paper addresses a key knowledge gap on the environmental impact of reverse logistics strategies from a construction supply chain perspective. The research results reveal that “reuse” strategy has the least environmental impact, remanufacturing has a lesser impact on the environment than other options, recycling has the second highest environmental impact, with landfill assessed as the least environmentally friendly end-of-life option. Consequently, this paper emphasizes the importance of informed strategic supply chain decisions for reverse logistics to obtain the best outcome from environmentally friendly practices. Since there is no relevant previous research conducted to examine the environmental impact of different reverse logistics options from a construction supply chain perspective, the findings of this study provide crucial input in RL decision making and can extend to contributing to practice. Industry stakeholders, especially the government agencies and regulatory bodies, should encourage practitioners to adopt the most effective RL approaches, including reuse and remanufacturing, rather than focusing only on material recycling. The motivation of supportive designs for more environmentally friendly RL options from the researchers, designers, architects, and planners are required in this process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.