A defining feature of sleep is reduced responsiveness to external stimuli, but the mechanisms mediating sensory-evoked arousal remain unclear. We hypothesized that reduced locus coeruleus (LC) norepinephrine (NE) activity during sleep mediates unresponsiveness, and its action promotes sensory-evoked awakenings. We tested this using electrophysiological, behavioral, pharmacological, and optogenetic techniques alongside auditory stimulation in freely behaving rats. We found that systemic reduction in NE signaling lowered probability of sound-evoked awakenings (SEAs). The level of tonic LC activity during sleep anticipated SEAs. Optogenetic LC activation promoted arousal as evident in sleep-wake transitions, EEG desynchronization, and pupil dilation. Minimal LC excitation before sound presentation increased SEA probability. Optogenetic LC silencing using a soma-targeted anion-conducting channelrhodopsin (stGtACR2) suppressed LC spiking and constricted pupils. Brief periods of LC opto-silencing reduced the probability of SEAs. Thus, LC-NE activity determines the likelihood of sensory-evoked awakenings, and its reduction during sleep constitutes a key factor mediating behavioral unresponsiveness.
Engagement is a major determinant of performance. Hyper-engagement risks impulsivity and is fatiguing over time, while hypo-engagement could lead to missed opportunities. Even in sleep, when engagement levels are minimal, sensory responsiveness varies. Thus, maintaining an optimal engagement level with the environment is a fundamental cognitive ability. The claustrum, and in particular its reciprocal connectivity with executive regions in the frontal cortex, has been associated with salience, attention and sleep. These apparently disparate roles can be consolidated within the context of engagement. Here we describe the activity of claustro-frontal circuits in a task imposing a tradeoff between response inhibition and sensory acuity (ENGAGE). Recording calcium fiber photometry during >80,000 trials, we characterize claustrum recruitment during salient behavioral events, and find that a moderate level of activity in claustro-cingulate projections defines optimal engagement. Low activity of this pathway is associated with impulsive actions, while high activity is associated with behavioral lapses. Chemogenetic activation of cingulate-projecting claustrum neurons suppressed impulsive behavior and reduced the engagement of mice in the task. This relationship became even clearer upon addressing individual variability in the strategy mice employed during the ENGAGE task. Furthermore, this association of claustrum activity and engagement extends into sleep. Using simultaneous EEG and photometry recordings in the claustrum, we find that cingulate projecting claustrum neurons are most active during deep unresponsive slow-wave sleep, when mice are less prone to awakening by sensory stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.