We report the observation of nonlinear interactions in quadratic nonlinear crystals having a geometrically twisted susceptibility pattern. The quasi-angular-momentum of these crystals is imprinted on the interacting photons during the nonlinear process so that the total angular momentum is conserved. These crystals affect three basic physical quantities of the output photons: energy, translational momentum, and angular momentum. Here we study the case of second-order harmonic vortex beams, generated from a gaussian pump beam. These crystals can be used to produce multidimensional entanglement of photons by angular momentum states or for shaping the vortex's structure and polarization.
Summary Haptoglobin and transferrin types have been determined by starch gel electrophoresis on blood from 929 subjects belonging to various Jewish communities. The frequency of the Hp1 gene in 499 Ashkenazic Jews is 0.29 and does not differ significantly from the value of 0–26 found in 345 Jews of Oriental origin. The Hp1 frequency of Ashkenazic Jews is significantly lower than that reported for the autochthonous populations of Central and Western Europe. Two small samples collected among Sephardic Jews and among the offspring of intercommunity marriages exhibit somewhat higher frequencies of the Hp1 gene. The modified 2‐1 phenotype was found in a single subject from Baghdad. There were three cases of ahaptoglobinaemia among Ashkenazic Jews and three among the Oriental groups. No ahaptoglobinaemia was discovered in a family sample of ninety‐two Jews from Kurdistan among whom thalassaemia minor was common and the majority of whom were affeeted with G‐6‐P‐D deficiency. All transferrins were of type C.
We study theoretically and experimentally the varying polarization states and intensity patterns of self-accelerating vector beams. It is shown that as these beams propagate, the main intensity lobe and the polarization singularity gradually drift apart. Furthermore, the propagation dynamics can be manipulated by controlling the beams' acceleration coefficients. We also demonstrate the self-healing dynamics of these accelerating vector beams for which sections of the vector beam are being blocked by an opaque or polarizing obstacle. Our results indicate that the self-healing process is almost insensitive for the obstacles' polarization direction. Moreover, the spatial polarization structure also shows selfhealing properties, and it is reconstructed as the beam propagates further beyond the perturbation plane. These results open various possibilities for generating, shaping and manipulating the intensity patterns and space variant polarization states of accelerating vector beams.
Smart cities and traffic applications can be modelled by dynamic graphs for which vertices or edges can be added, removed or change their properties. In the smart city or traffic monitoring problem, we wish to detect if a city dynamic graph maintains a certain local or global property. Monitoring city large dynamic graphs, is even more complicated. To treat the monitoring problem efficiently we divide a large city graph into sub-graphs. In the distributed monitoring problem we would like to define some local conditions for which the global city graph G maintains a certain property. Furthermore, we would like to detect if a local city change in a sub-graph affect a global graph property. Here we show that turning the graph into a non-trivial one by handling directed graphs, weighted graphs, graphs with nodes that contain different attributes or combinations of these aspects, can be integrated in known urban environment applications. These implementations are demonstrated here in two types of network applications: traffic network application and on-line social network smart city applications. We exemplify these two problems, show their experimental results and characterize efficient monitoring algorithms that can handle them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.