<b><i>Background:</i></b> Prior studies suggest that participation in rehabilitation exercises improves motor function poststroke; however, studies on optimal exercise dose and timing have been limited by the technical challenge of quantifying exercise activities over multiple days. <b><i>Objectives:</i></b> The objectives of this study were to assess the feasibility of using body-worn sensors to track rehabilitation exercises in the inpatient setting and investigate which recording parameters and data analysis strategies are sufficient for accurately identifying and counting exercise repetitions. <b><i>Methods:</i></b> MC10 BioStampRC® sensors were used to measure accelerometer and gyroscope data from upper extremities of healthy controls (<i>n</i> = 13) and individuals with upper extremity weakness due to recent stroke (<i>n</i> = 13) while the subjects performed 3 preselected arm exercises. Sensor data were then labeled by exercise type and this labeled data set was used to train a machine learning classification algorithm for identifying exercise type. The machine learning algorithm and a peak-finding algorithm were used to count exercise repetitions in non-labeled data sets. <b><i>Results:</i></b> We achieved a repetition counting accuracy of 95.6% overall, and 95.0% in patients with upper extremity weakness due to stroke when using both accelerometer and gyroscope data. Accuracy was decreased when using fewer sensors or using accelerometer data alone. <b><i>Conclusions:</i></b> Our exploratory study suggests that body-worn sensor systems are technically feasible, well tolerated in subjects with recent stroke, and may ultimately be useful for developing a system to measure total exercise “dose” in poststroke patients during clinical rehabilitation or clinical trials.
Background: Prior studies suggest that participation in rehabilitation exercises improves motor function post-stroke; however, studies on optimal exercise dose and timing have been limited by the technical challenge of quantifying exercise activities over multiple days. Objective: In this exploratory study, we assessed the feasibility of using body-worn sensors to track rehabilitation exercises in the inpatient setting and investigated which recording parameters and data analysis strategies are sufficient for accurately identifying and counting exercise repetitions. Methods: MC10 BioStampRC® sensors were used to measure accelerometry and gyroscopy data from arms of healthy controls (n=13) and patients with upper extremity (UE) weakness due to recent stroke (n=13) while the subjects performed three pre-selected UE exercises. Sensor data was then labeled by exercise type, and this labeled data set was used to train a machine learning classification algorithm for identifying exercise type. The machine-learning algorithm and a peak-finding algorithm were used to count exercise repetitions in non-labeled data sets. Results: We achieved a repetition counting accuracy of 95.6 ± 2.4 % overall, and 95.0 ± 2.3 % in patients with UE weakness due to stroke. Accuracy was decreased when using fewer sensors or using accelerometry data alone. Conclusions: Our exploratory study suggests that body-worn sensor systems are technically feasible, well-tolerated in subjects with recent stroke, and may ultimately be useful for developing a system to measure total exercise “dose” in post-stroke patients during clinical rehabilitation or clinical trials.
Stroke is a major cause of adult-onset disability worldwide, and approximately 40% of stroke survivors have residual impairment in upper-extremity function. Prior studies suggest that increased participation in rehabilitation exercises improves motor function post-stroke, 1 however further clarification of optimal exercise dose and timing has been limited by the technical challenge of quantifying exercise activities over multiple days. In this exploratory study, we assessed the feasibility of using body-worn sensors to track rehabilitation exercises in the inpatient setting, and investigated which recording parameters and data analysis strategies are sufficient for accurately identifying and counting exercise repetitions. MC10 BioStampRC® sensors were used to measure accelerometry and gyroscopy from arms of healthy controls (n=11) and patients with arm weakness due to recent stroke (n=13) while the subjects performed three pre-selected upper extremity exercises. Sensor data was then labeled by exercise type, and this labeled data set was used to train a machine learning classification algorithm for identifying exercise type. The machine-learning algorithm and a peak-finding algorithm was used to count exercise repetitions in non-labeled data sets. We achieved a repetition counting accuracy of 95.6 ± 2.4 % overall, and 95.0 ± 2.3 % in patients with arm weakness due to stroke. Accuracy was decreased when using fewer sensors or using accelerometry alone. Our exploratory study suggests that body-worn sensor systems are technically feasible, well-tolerated in subjects with recent stroke, and may ultimately be useful for developing a system to measure total exercise "dose" in post-stroke patients during clinical rehabilitation or clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.