Background Monitoring the body temperature of premature infants is vital, as it allows optimal temperature control and may provide early warning signs for severe diseases such as sepsis. Thermography may be a non-contact and wireless alternative to state-of-the-art, cable-based methods. For monitoring use in clinical practice, automatic segmentation of the different body regions is necessary due to the movement of the infant. Methods This work presents and evaluates algorithms for automatic segmentation of infant body parts using deep learning methods. Based on a U-Net architecture, three neural networks were developed and compared. While the first two only used one imaging modality (visible light or thermography), the third applied a feature fusion of both. For training and evaluation, a dataset containing 600 visible light and 600 thermography images from 20 recordings of infants was created and manually labeled. In addition, we used transfer learning on publicly available datasets of adults in combination with data augmentation to improve the segmentation results. Results Individual optimization of the three deep learning models revealed that transfer learning and data augmentation improved segmentation regardless of the imaging modality. The fusion model achieved the best results during the final evaluation with a mean Intersection-over-Union (mIoU) of 0.85, closely followed by the RGB model. Only the thermography model achieved a lower accuracy (mIoU of 0.75). The results of the individual classes showed that all body parts were well-segmented, only the accuracy on the torso is inferior since the models struggle when only small areas of the skin are visible. Conclusion The presented multi-modal neural networks represent a new approach to the problem of infant body segmentation with limited available data. Robust results were obtained by applying feature fusion, cross-modality transfer learning and classical augmentation strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.