SUMMARY The genetic origin of novel traits is a central but challenging puzzle in evolutionary biology. Among snakes, phospholipase A2 (PLA2)-related toxins have evolved in different lineages to function as potent neurotoxins, myotoxins, or hemotoxins. Here, we traced the genomic origin and evolution of PLA2 toxins by examining PLA2 gene number, organization, and expression in both neurotoxic and non-neurotoxic rattlesnakes. We found that even though most North American rattlesnakes do not produce neurotoxins, the genes of a specialized heterodimeric neurotoxin predate the origin of rattlesnakes and were present in their last common ancestor (~22 mya). The neurotoxin genes were then deleted independently in the lineages leading to the Western Diamondback (Crotalus atrox) and Eastern Diamondback (C. adamanteus) rattlesnakes (~6 mya), while a PLA2 myotoxin gene retained in C. atrox was deleted from the neurotoxic Mojave rattlesnake (C. scutulatus; ~4 mya). The rapid evolution of PLA2 gene number appears to be due to transposon invasion that provided a template for non-allelic homologous recombination.
The genetic origins of novelty are a central interest of evolutionary biology. Most new proteins evolve from preexisting proteins but the evolutionary path from ancestral gene to novel protein is challenging to trace, and therefore the requirements for and order of coding sequence changes, expression changes, or gene duplication are not clear. Snake venoms are important novel traits that are comprised of toxins derived from several distinct protein families, but the genomic and evolutionary origins of most venom components are not understood. Here, we have traced the origin and diversification of one prominent family, the snake venom metalloproteinases (SVMPs) that play key roles in subduing prey in many vipers. Genomic analyses of several rattlesnake (Crotalus) species revealed the SVMP family massively expanded from a single, deeply conserved adam28 disintegrin and metalloproteinase gene, to as many as 31 tandem genes in the Western Diamondback rattlesnake (Crotalus atrox) through a number of single gene and multigene duplication events. Furthermore, we identified a series of stepwise intragenic deletions that occurred at different times in the course of gene family expansion and gave rise to the three major classes of secreted SVMP toxins by sequential removal of a membrane-tethering domain, the cysteine-rich domain, and a disintegrin domain, respectively. Finally, we show that gene deletion has further shaped the SVMP complex within rattlesnakes, creating both fusion genes and substantially reduced gene complexes. These results indicate that gene duplication and intragenic deletion played essential roles in the origin and diversification of these novel biochemical weapons.
Natural selection is generally expected to favor one form of a given trait within a population. The presence of multiple functional variants of traits involved in activities such as feeding, reproduction, or the defense against predators is relatively uncommon within animal species. The genetic architecture and evolutionary mechanisms underlying the origin and maintenance of such polymorphisms are of special interest. Among rattlesnakes, several instances of the production of biochemically distinct neurotoxic or hemorrhagic venom types within the same species are known. Here, we investigated the genetic basis of this phenomenon in three species and found that neurotoxic and hemorrhagic individuals of the same species possess markedly different haplotypes at two toxin gene complexes. For example, neurotoxic and hemorrhagic Crotalus scutulatus individuals differ by 5 genes at the phospholipase A2 (PLA2) toxin gene complex and by 11 genes at the metalloproteinase (MP) gene complex. A similar set of extremely divergent haplotypes also underlies alternate venom types within C. helleri and C. horridus. We further show that the MP and PLA2 haplotypes of neurotoxic C. helleri appear to have been acquired through hybridization with C. scutulatus-a rare example of the horizontal transfer of a potentially highly adaptive suite of genes. These large structural variants appear analogous to immunity gene complexes in host-pathogen arms races and may reflect the impact of balancing selection at the PLA2 and MP complexes for predation on different prey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.