Amides are common functional groups that have been well studied for more than a century.1 They serve as the key building blocks of proteins and are present in an broad range of other natural and synthetic compounds. Amides are known to be poor electrophiles, which is typically attributed to resonance stability of the amide bond.1,2 Whereas Nature can easily cleave amides through the action of enzymes, such as proteases,3 the ability to selectively break the C–N bond of an amide using synthetic chemistry is quite difficult. In this manuscript, we demonstrate that amide C–N bonds can be activated and cleaved using nickel catalysts. We have used this methodology to convert amides to esters, which is a challenging and underdeveloped transformation. The reaction methodology proceeds under exceptionally mild reaction conditions, and avoids the use of a large excess of an alcohol nucleophile. Density functional theory (DFT) calculations provide insight into the thermodynamics and catalytic cycle of this unusual transformation. Our results provide a new strategy to harness amide functional groups as synthons and are expected fuel the further use of amides for the construction of carbon–heteroatom or carbon–carbon bonds using non-precious metal catalysis.
We report the first catalytic method for activating the acyl C–O bonds of methyl esters through an oxidative addition process. The oxidative addition adducts, formed using nickel catalysis, undergo in situ trapping to provide anilide products. DFT calculations are used to support the proposed reaction mechanism, understand why decarbonylation does not occur competitively, and to elucidate the beneficial role of the substrate structure and Al(OtBu)3 additive on the kinetics and thermodynamics of the reaction.
We report the amination of aryl carbamates using nickel-catalysis. The methodology is broad in scope with respect to both coupling partners and delivers aminated products in synthetically useful yields. Computational studies provide the full catalytic cycle of this transformation, and suggest that reductive elimination is the rate-determining step. Given that carbamates are easy to prepare, robust, inert to Pd-catalysis, and useful for arene functionalization, these substrates are particularly attractive partners for use in synthesis. The sequential use of carbamate functionalization/site-selective cross-coupling processes highlights the utility of this methodology.
Selective area atomic layer deposition (SA-ALD) offers the potential to replace a lithography step and provide a significant advantage to mitigate pattern errors and relax design rules in semiconductor fabrication. One class of materials that shows promise to enable this selective deposition process are self-assembled monolayers (SAMs). In an effort to more completely understand the ability of these materials to function as barriers for ALD processes and their failure mechanism, a series of SAM derivatives were synthesized and their structureproperty relationship explored. These materials incorporate different side group functionalities and were evaluated in the deposition of a sacrificial etch mask. Monolayers with weak supramolecular interactions between components (for example, van der Waals) were found to direct a selective deposition, though they exhibit significant defectivity at and below 100 nm feature sizes. The incorporation of stronger noncovalent supramolecular interacting groups in the monolayer design, such as hydrogen bonding units or pi–pi interactions, did not produce an added benefit over the weaker interacting components. Incorporation of reactive moieties in the monolayer component that enabled the polymerization of an SAM surface, however, provided a more effective barrier, greatly reducing the number and types of defects observed in the selectively deposited ALD film. These reactive monolayers enabled the selective deposition of a film with critical dimensions as low as 15 nm. It was also found that the selectively deposited film functioned as an effective barrier for isotropic etch chemistries, allowing the selective removal of a metal without affecting the surrounding surface. This work enables selective area ALD as a technology through (1) the development of a material that dramatically reduces defectivity and (2) the demonstrated use of the selectively deposited film as an etch mask and its subsequent removal under mild conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.