We present a comprehensive theoretical study of conventional superconductivity in cubic antiperovskites materials with composition XYZ3 where X and Z are metals, and Y is H, B, C, N, O, and P. Our starting point are electron–phonon calculations for 397 materials performed with density-functional perturbation theory. While 43% of the materials are dynamically unstable, we discovered 16 compounds close to thermodynamic stability and with Tc higher than 5 K. Using these results to train interpretable machine-learning models, leads us to predict a further 57 (thermodynamically unstable) materials with superconducting transition temperatures above 5 K, reaching a maximum of 17.8 K for PtHBe3. Furthermore, the models give us an understanding of the mechanism of superconductivity in antiperovskites. The combination of traditional approaches with interpretable machine learning turns out to be a very efficient methodology to study and systematize whole classes of materials and is easily extendable to other families of compounds or physical properties.
Crystal‐graph attention neural networks have emerged recently as remarkable tools for the prediction of thermodynamic stability. The efficacy of their learning capabilities and their reliability is however subject to the quantity and quality of the data they are fed. Previous networks exhibit strong biases due to the inhomogeneity of the training data. Here a high‐quality dataset is engineered to provide a better balance across chemical and crystal‐symmetry space. Crystal‐graph neural networks trained with this dataset show unprecedented generalization accuracy. Such networks are applied to perform machine‐learning‐assisted high‐throughput searches of stable materials, spanning 1 billion candidates. In this way, the number of vertices of the global T = 0 K phase diagram is increased by 30% and find more than ≈150 000 compounds with a distance to the convex hull of stability of less than 50 meV atom−1. The discovered materials are then accessed for applications, identifying compounds with extreme values of a few properties, such as superconductivity, superhardness, and giant gap‐deformation potentials.
Heusler compounds attract a great deal of attention from researchers thanks to a wealth of interesting properties, among which is superconductivity. Here we perform an extensive study of the superconducting and elastic properties of the cubic (full-)Heusler family using a mixture of ab initio methods, as well as interpretable and predictive machine-learning models. By analyzing the statistical distributions of these properties and comparing them to anti-perovskites, we recognize universal behaviors that should be common to all conventional superconductors while others turn out to be specific to the material family. In total, we discover a total of eight hypothetical materials with critical temperatures above 10 K to be compared with the current record of Tc = 4.7 K in this family. Furthermore, we expect most of these materials to be highly ductile, making them potential candidates for the manufacture of wires and tapes for superconducting magnets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.