The role played by whole genome duplication (WGD) in plant evolution is actively debated. WGDs have been associated with advantages such as superior colonization, various adaptations, and increased effective population size. However, the lack of a comprehensive mapping of WGDs within a major plant clade has led to uncertainty regarding the potential association of WGDs and higher diversification rates. Using seven chloroplast and nuclear ribosomal genes, we constructed a phylogeny of 5036 species of Caryophyllales, representing nearly half of the extant species. We phylogenetically mapped putative WGDs as identified from analyses on transcriptomic and genomic data and analyzed these in conjunction with shifts in climatic occupancy and lineage diversification rate. Thirteen putative WGDs and 27 diversification shifts could be mapped onto the phylogeny. Of these, four WGDs were concurrent with diversification shifts, with other diversification shifts occurring at more recent nodes than WGDs. Five WGDs were associated with shifts to colder climatic occupancy. While we find that many diversification shifts occur after WGDs, it is difficult to consider diversification and duplication to be tightly correlated. Our findings suggest that duplications may often occur along with shifts in either diversification rate, climatic occupancy, or rate of evolution.
Global population growth and increasing resource scarcity are necessitating sustainable manufacturing and circular economy (CE) practices. These practices require the decisions made at each product life cycle (PLC) stage consider sustainability and circularity implications. We propose PLC system level optimization to identify the most favorable choices, instead of siloed individual PLC stage-specific optimizations. This should yield better circularity by permitting manufacturers to take a more holistic view and identify the areas of highest impact across the PLC. This paper presents initial work towards building a PLC system optimization framework. From an initial review of current circularity metrics, we identify metrics that are suitable for forming the optimization objectives. Second, we identify decision variables available to manufacturers across the PLC that are useful in optimizing the entire system’s circularity and sustainability. Finally, we identify limitations of current metrics, and discuss major challenges and potential solutions to PLC system optimization problems.
The development of secondary sources as industrial feedstocks is important to creating resilient supply chains that contribute towards diverting resources away from landfills, mitigating deleterious environmental impacts, and minimizing market volatility. A major challenge to develop secondary feedstocks is the coordination and digitalization of the large quantities of generated information at each phase of a product’s life cycle. This paper builds upon earlier work that illustrates a top-level model of the activities and information needs to integrate product manufacturing with circular practices. This paper extends the initial work to explore the cyclical nature of Circular Economy (CE) information flows specifically related to product End-of-life. Using the Integrated Definition 0, IDEF0, modeling technique this paper examines the End-of-life function envisioned under a CE manufacturing model [ISO, 2012]. This function is decomposed into subsequent child functions and is analyzed relative to other product life cycle phases. The paper reviews the current global product EoL practices and in the context of the developed IDEF0 model. The proposed framework contributes a detailed description and presentation of information flows and the drivers of change (i.e., feedback loops) that are essential for creating secondary material streams based on the critically analyzing the reviewed literature. The novelty of this study includes the identification of standards and metrics gaps to facilitate quantitative assessment and evaluation in a CE. The study further elucidates the discussion around CE in terms of resource regeneration by ‘designing out waste’ and decoupling economic growth from resource depletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.