The bulk-to-boundary dictionary for 4D celestial holography is given a new entry defining 2D boundary states living on oriented circles on the celestial sphere. The states are constructed using the 2D CFT state-operator correspondence from operator insertions corresponding to either incoming or outgoing particles which cross the celestial sphere inside the circle. The BPZ construction is applied to give an inner product on such states whose associated bulk adjoints are shown to involve a shadow transform. Scattering amplitudes are then given by BPZ inner products between states living on the same circle but with opposite orientations. 2D boundary states are found to encode the same information as their 4D bulk counterparts, but organized in a radically different manner.
The analytic continuation of the general signature (1, 3) Lorentzian Kerr-Taub-NUT black holes to signature (2, 2) Kleinian black holes is studied. Their global structure is characterized by a toric Penrose diagram resembling their Lorentzian counterparts. Kleinian black holes are found to be self-dual when their mass and NUT charge are equal for any value of the Kerr rotation parameter a. Remarkably, it is shown that the rotation a can be eliminated by a large diffeomorphism; this result also holds in Euclidean signature. The continuation from Lorentzian to Kleinian signature is naturally induced by the analytic continuation of the S-matrix. Indeed, we show that the geometry of linearized black holes, including Kerr-Taub-NUT, is captured by (2, 2) three-point scattering amplitudes of a graviton and a massive spinning particle. This stands in sharp contrast to their Lorentzian counterparts for which the latter vanishes kinematically and enables a direct link to the S-matrix.
Electromagnetism contains an infinite dimensional symmetry group of large gauge transformations. This gives rise to an infinite number of conserved quantities called "soft charges" via Noether's theorem. When charged particles scatter, the conservation of soft charge constrains the overall amount of radiation emitted per angle. Here we describe the physical consequences of soft charge conservation and give fresh accounts of the roles of spacelike and timelike infinity in these conservation laws. We conclude by exploring the possibility of creating a dual boundary theory of electromagnetism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.