Activation of T cells by antigen-presenting cells (APCs) depends on the complex integration of signals that are delivered by multiple antigen receptors. Most receptor-proximal activation events in T cells were identified using multivalent anti-receptor antibodies, eliminating the need to use the more complex APCs. As the physiological membrane-associated ligands on the APC and the activating antibodies probably trigger the same biochemical pathways, it is unknown why the antibodies, even at saturating concentrations, fail to trigger some of the physiological T-cell responses. Here we study, at the level of the single cell, the responses of T cells to native ligands. We used a digital imaging system and analysed the three-dimensional distribution of receptors and intracellular proteins that cluster at the contacts between T cells and APCs during antigen-specific interactions. Surprisingly, instead of showing uniform oligomerization, these proteins clustered into segregated three-dimensional domains within the cell contacts. The antigen-specific formation of these new, spatially segregated supramolecular activation clusters may generate appropriate physiological responses and may explain the high sensitivity of the T cells to antigen.
G protein-coupled receptors (GPCRs) are essential mediators of cellular signaling and important targets of drug action. Of the approximately 350 non-olfactory human GPCRs, more than 100 are still considered “orphans” as their endogenous ligand(s) remain unknown. Here, we describe a unique open-source resource that provides the capacity to interrogate the druggable human GPCR-ome via a G protein-independent β-arrestin recruitment assay. We validate this unique platform at more than 120 non-orphan human GPCR targets, demonstrate its utility for discovering new ligands for orphan human GPCRs, and describe a method (PRESTO-TANGO; Parallel Receptor-ome Expression and Screening via Transcriptional Output - TANGO) for the simultaneous and parallel interrogation of the entire human GPCR-ome.
Microtubule disruption has dramatic effects on the normal centrosomal localization of the Golgi complex, with Golgi elements remaining as competent functional units but undergoing a reversible "fragmentation" and dispersal throughout the cytoplasm. In this study we have analyzed this process using digital fluorescence image processing microscopy combined with biochemical and ultrastructural approaches. After microtubule depolymerization, Golgi membrane components were found to redistribute to a distinct number of peripheral sites that were not randomly distributed, but corresponded to sites of protein exit from the ER. Whereas Golgi enzymes redistributed gradually over several hours to these peripheral sites, ERGIC-53 (a protein which constitutively cycles between the ER and Golgi) redistributed rapidly (within 15 minutes) to these sites after first moving through the ER. Prior to this redistribution, Golgi enzyme processing of proteins exported from the ER was inhibited and only returned to normal levels after Golgi enzymes redistributed to peripheral ER exit sites where Golgi stacks were regenerated. Experiments examining the effects of microtubule disruption on the membrane pathways connecting the ER and Golgi suggested their potential role in the dispersal process. Whereas clustering of peripheral pre-Golgi elements into the centrosomal region failed to occur after microtubule disruption, Golgi-to-ER membrane recycling was only slightly inhibited. Moreover, conditions that impeded Golgi-to-ER recycling completely blocked Golgi fragmentation. Based on these findings we propose that a slow but constitutive flux of Golgi resident proteins through the same ER/Golgi cycling pathways as ERGIC-53 underlies Golgi Dispersal upon microtubule depolymerization. Both ERGIC-53 and Golgi proteins would accumulate at peripheral ER exit sites due to failure of membranes at these sites to cluster into the centrosomal region. Regeneration of Golgi stacks at these peripheral sites would re-establish secretory flow from the ER into the Golgi complex and result in Golgi dispersal.
The Golgi complex is a dynamic organelle engaged in both secretory and retrograde membrane traffic. Here, we use green fluorescent protein–Golgi protein chimeras to study Golgi morphology in vivo. In untreated cells, membrane tubules were a ubiquitous, prominent feature of the Golgi complex, serving both to interconnect adjacent Golgi elements and to carry membrane outward along microtubules after detaching from stable Golgi structures. Brefeldin A treatment, which reversibly disassembles the Golgi complex, accentuated tubule formation without tubule detachment. A tubule network extending throughout the cytoplasm was quickly generated and persisted for 5–10 min until rapidly emptying Golgi contents into the ER within 15–30 s. Both lipid and protein emptied from the Golgi at similar rapid rates, leaving no Golgi structure behind, indicating that Golgi membranes do not simply mix but are absorbed into the ER in BFA-treated cells. The directionality of redistribution implied Golgi membranes are at a higher free energy state than ER membranes. Analysis of its kinetics suggested a mechanism that is analogous to wetting or adsorptive phenomena in which a tension-driven membrane flow supplements diffusive transfer of Golgi membrane into the ER. Such nonselective, flow-assisted transport of Golgi membranes into ER suggests that mechanisms that regulate retrograde tubule formation and detachment from the Golgi complex are integral to the existence and maintenance of this organelle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.