Adipocytes regulate tissues through production of adipokines that can act both locally and systemically. Adipocytes also have been found to play a critical role in regulating the healing process. To better understand this role, we developed a three-dimensional human adipocyte spheroid system that has an adipokine profile similar to in vivo adipose tissues. Previously, we found that conditioned medium from these spheroids induces human dermal fibroblast conversion into highly contractile, collagen-producing myofibroblasts through a transforming growth factor beta-1 (TGF-β1) independent pathway. Here, we sought to identify how mature adipocytes signal to dermal fibroblasts through adipokines to induce myofibroblast conversion. By using molecular weight fractionation, heat inactivation and lipid depletion, we determined mature adipocytes secrete a factor that is 30–100 kDa, heat labile and lipid associated that induces myofibroblast conversion. We also show that the depletion of the adipokine adiponectin, which fits those physico-chemical parameters, eliminates the ability of adipocyte-conditioned media to induce fibroblast to myofibroblast conversion. Interestingly, native adiponectin secreted by cultured adipocytes consistently elicited a stronger level of α-smooth muscle actin expression than exogenously added adiponectin. Thus, adiponectin secreted by mature adipocytes induces fibroblast to myofibroblast conversion and may lead to a phenotype of myofibroblasts distinct from TGF-β1-induced myofibroblasts.
Adipocytes regulate tissues through production of adipokines that can act both locally and systemically. Adipocytes also have been found to play a critical role in regulating the healing process. To better understand this role, we developed a 3D human adipocyte spheroid system that has an adipokine profile similar to in vivo adipose tissues. Previously, we found that conditioned medium from these spheroids induces human dermal fibroblast conversion into highly contractile, collagen producing myofibroblasts through a transforming growth factor beta-1 (TGF-β1) independent pathway. Here, we sought to identify how mature adipocytes signal to dermal fibroblasts through adipokines to induce myofibroblast conversion. By using molecular weight fractionation, heat inactivation, and lipid depletion, we determined mature adipocytes secrete a factor that is 30-100 kDa, heat labile, and lipid associated that induces myofibroblast conversion. We also show that depletion of the adipokine adiponectin, which fits those physiochemical parameters, eliminates the ability of adipocyte conditioned media to induce fibroblast to myofibroblast conversion. Interestingly, native adiponectin secreted by cultured adipocytes consistently elicited a stronger level of 𝛼-SMA expression than exogenously added adiponectin. Thus, adiponectin secreted by mature adipocytes induces fibroblast to myofibroblast conversion and may lead to a phenotype of myofibroblasts distinct from TGF-β1 induced myofibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.