Antibiotic resistance is one of the world's most urgent public health problems. Antimicrobial photodynamic therapy (aPDT) is a promising therapy to combat the growing threat of antibiotic resistance. The aPDT combines a photosensitizer and light to generate reactive oxygen species to induce bacterial inactivation. Ruthenium polypyridyl complexes are significant because they possess unique photophysical properties that allow them to produce reactive oxygen species upon photoirradiation, which leads to cytotoxicity. These antimicrobial agents cause bacterial cell death by DNA and cytoplasmic membrane damage. This article presents a comprehensive review of photoactive antimicrobial properties of kinetically inert and labile ruthenium complexes, nanoparticles coupled photoactive ruthenium complexes, and photoactive ruthenium nanoparticles. Additionally, limitations of current ruthenium‐based photoactive antimicrobial agents and future directions for the development of antibiotic‐resistant photoactive antimicrobial agents are discussed. It is important to raise awareness for the ruthenium‐based aPDT agents in order to develop a new class of photoactive metalloantibiotics capable of combating antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.