Insulator based dielectrophoresis is powerful tool for separating and charactering particles, yet it is limited by a lack of quantitative characterizations. Here this limitation is addressed by employing a method capable of quantifying the dielectrophoretic mobility of particles. Using streak-based velocimetry the particle properties are deduced from their motion in a microfluidic channel with a constant electric field gradient. From this approach the dielectrophoretic mobility of 1 μm polystyrene particles was found to be −2 ± 0.4 × 10−8 cm4/(V2·s). In the future, such quantitative treatment will allow for the elucidation of unique insights and rational design of devices.
This work presents several critical details for making cIEF-MALDI-MS a robust technique which will allow for more routine application and aid in automation. This includes emphasis on the hardware necessary for syringe pump mobilization and proper protocol for preventing disruption from gas bubbles. Following these guidelines, excellent elution time reproducibility is demonstrated for six pI markers (RSD < 5%). Additionally, the pI markers are used to calibrate the pH gradient and determine experimental pIs of proteins detected offline by mass spectrometry. This was demonstrated using a standard protein mixture of myoglobin and two forms of β-lactoglobulin. Experimental determination of protein pIs and molecular weights were found to be in agreement with literature values. The technical details discussed provide a sound foundation for applying the offline coupling of MALDI-MS with cIEF.
A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.
A novel approach to molecular separations is investigated using a technique termed droplet-based isoelectric focusing. Drops are manipulated discretely on a superhydrophobic surface, subjected to low voltages for isoelectric focusing, and split-resulting in a preparative separation. A universal indicator dye demonstrates the generation of stable, reversible pH gradients (3-10) in ampholyte buffers and these gradients lead to protein focusing within the drop length. Focusing was visually characterized, spectroscopically verified, and assessed quantitatively by non-invasive light scattering measurements. It was found to correlate with a quantitative model based on 1D steady state theory. This work illustrates that molecular separations can be deployed within a single open drop and the differential fractions can be separated into new discrete liquid elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.