Rapid environmental change can lead to population extinction or evolutionary rescue. The global staple crop sorghum ( Sorghum bicolor ) has recently been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari ). We characterized genomic signatures of adaptation in a Haitian breeding population that had rapidly adapted to SCA infestation, conducting evolutionary population genomics analyses on 296 Haitian lines versus 767 global accessions. Genome scans and geographic analyses suggest that SCA adaptation has been conferred by a globally rare East African allele of RMES1 , which spread to breeding programs in Africa, Asia, and the Americas. De novo genome sequencing revealed potential causative variants at RMES1 . Markers developed from the RMES1 sweep predicted resistance in eight independent commercial and public breeding programs. These findings demonstrate the value of evolutionary genomics to develop adaptive trait technology and highlight the benefits of global germplasm exchange to facilitate evolutionary rescue.
To exploit the novel genetic diversity residing in tropical sorghum germplasm, an expansive backcross nested-association mapping (BC-NAM) resource was developed in which novel genetic diversity was introgressed into elite inbreds. A major limitation of exploiting this type of genetic resource in hybrid improvement programs is the required evaluation in hybrid combination of the vast number of BC-NAM populations and lines. To address this, the utility of genomic information was evaluated to predict the hybrid performance of BC-NAM populations. Two agronomically elite BC-NAM populations were chosen for evaluation in which elite inbred RTx436 was the recurrent parent. Each BC1F3 line was evaluated in hybrid combination with an elite tester in two locations with phenotypes of grain yield, plant height, and days to anthesis collected on all test cross hybrids. Lines from both populations were found to outperform their recurrent parent. Efforts to utilize genetic distance based on genotyping-by-sequence (GBS) as a predictive tool for hybrid performance was ineffective. However, utilizing genomic prediction models using additive and dominance GBLUP kernels to screen germplasm appeared to be an effective method to eliminate inferior-performing lines that will not be useful in a hybrid breeding program.
Rapid environmental change can lead to extinction of populations or evolutionary rescue via genetic adaptation. In the past several years, smallholder and commercial cultivation of sorghum (Sorghum bicolor), a global cereal and forage crop, has been threatened by a global outbreak of an aggressive new biotype of sugarcane aphid (SCA; Melanaphis sacchari). Here we characterized genomic signatures of adaptation in a Haitian sorghum breeding population, which had been recently founded from admixed global germplasm, extensively intercrossed, and subjected to intense selection under SCA infestation. We conducted evolutionary population genomics analyses of 296 post-selection Haitian lines compared to 767 global accessions at 159,683 single nucleotide polymorphisms. Despite intense selection, the Haitian population retains high nucleotide diversity through much of the genome due to diverse founders and an intercrossing strategy. A genome-wide fixation (FST) scan and geographic analyses suggests that adaptation to SCA in the Haiti is conferred by a globally-rare East African allele of RMES1, which has also spread to breeding programs in Africa, Asia, and the Americas. De novo genome sequencing data for SCA resistant and susceptible lines revealed putative causative variants at RMES1. Convenient low-cost markers were developed from the RMES1 selective sweep and successfully predicted resistance in independent U.S. x African breeding lines and eight U.S. commercial and public breeding programs, demonstrating the global relevance of the findings. Together, the findings highlight the potential of evolutionary genomics to develop adaptive trait breeding technology and the value of global germplasm exchange to facilitate evolutionary rescue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.