MR imaging-derived elastance index correlates with ICP over a wide range of ICP values. The sensitivity of the technique allows differentiation between normal and elevated ICP.
Knowledge of normal cerebrovascular volumetric flow rate (VFR) dynamics is of interest for establishing baselines, and for providing input data to cerebrovascular model studies. Retrospectively gated phase contrast magnetic resonance imaging was used to measure time-resolved VFR waveforms from the two internal carotid arteries (ICA) and two vertebral arteries (VA) of 17 young, normal volunteers (16M:1F) at rest in a supine posture. After normalizing each waveform to its respective cycle-averaged VFR, the timing and amplitude of feature points from the individual waveforms were averaged together to produce archetypal ICA and VA waveform shapes. Despite significant inter-individual differences in cycle-averaged VFR within the ICA compared to VA (275+/-52 versus 91+/-18 mL min-1), the respective waveform shapes were qualitatively similar overall. The VA waveform shape did, however, exhibit significantly higher amplitudes (e.g., peak:average VFR of 1.78+/-0.30 versus 1.66+/-0.16; p<0.05) and significantly higher variability both between and within subjects. A significant correlation was observed between peak and cycle-averaged VFR, suggesting that the representative waveform shapes presented here-when scaled by an individual's cycle-averaged VFR-may be used to characterize normal ICA and VA flow rate dynamics. This capability may be of particular utility for studies where cerebrovascular flow dynamics are required, but only average flow rates are available.
Purpose:To quantify the effect of posture on intracranial physiology in humans by MRI, and demonstrate the relationship between intracranial compliance (ICC) and pressure (ICP), and the pulsatility of blood and CSF flows. Materials and Methods:Ten healthy volunteers (29 Ϯ 7 years old) were scanned in the supine and sitting positions using a vertical gap MRI scanner. Pulsatile blood and CSF flows into and out from the brain were visualized and quantified using time-of-flight (TOF) and cine phase-contrast techniques, respectively. The total cerebral blood flow (tCBF), venous outflow, ICC, and ICP for the two postures were then calculated from the arterial, venous, and CSF volumetric flow rate waveforms using a previously described method. Results:In the upright posture, venous outflow is considerably less pulsatile (57%) and occurs predominantly through the vertebral plexus, while in the supine posture venous outflow occurs predominantly through the internal jugular veins. A slightly lower tCBF (12%), a considerably smaller CSF volume oscillating between the cranium and the spinal canal (48%), and a much larger ICC (2.8-fold) with a corresponding decrease in the MRI-derived ICP values were measured in the sitting position. Conclusion:The effect of posture on intracranial physiology can be quantified by MRI because posture-related changes in ICC and ICP strongly affect the dynamics of cerebral blood and CSF flows. This study provides important insight into the coupling that exists between arterial, venous, and CSF flow dynamics, and how it is affected by posture. BODY POSTURE strongly affects intracranial hydrodynamics and cerebral hemodynamics. Yet quantitative data on posture-related changes in parameters such as intracranial compliance (ICC), intracranial pressure (ICP), and cerebral blood flow (CBF) in humans is scarce because of the invasiveness and risk associated with measurements of ICC and ICP, and because most neuroimaging studies used for CBF measurement are constrained to the supine posture. Invasive measurements in a previous study of head-injury patients (1) documented lower ICP and mean blood pressure in the carotid arteries, and relatively unchanged cerebrovascular resistance and CBF when the patient's head was elevated at 30°. Studies on the effect of posture on cerebral venous outflow are more abundant. Angiographic studies in nonhuman primates demonstrated that the internal jugular veins (IJVs) are the main pathway for venous outflow in the supine position, while in the upright posture the IJVs collapse and venous outflow occurs mainly through secondary veins such as the vertebral, epidural, and deep cervical veins, which compose the vertebral venous plexus (2,3). Dilenge and Perey (3) postulated that the closing and opening of the vertebral plexus are related to changes in CSF pressure in the cervical region. Studies in humans utilized colorcoded duplex sonography to quantify the effect of posture on cerebral venous outflow (4 -7). Valdueza et al (4) reported lower total venous outflow in the up...
The fluid that resides within cranial and spinal cavities, cerebrospinal fluid (CSF), moves in a pulsatile fashion to and from the cranial cavity. This motion can be measured hy magnetic resonance imaging (MRI) and may he of clinical importance in the diagnosis of several brain and spinal cord disorders such as hydrocephalus, Chiari malformation, and syringomyelia. In the present work, a geometric and hydrodynamic characterization of an anatomically relevant spinal canal model is presented. We found that inertial effects dominate the flow field under normal physiological flow rates. Along the length of the spinal canal, hydraulic diameter was found to vary significantly from 5 to 15 mm. The instantaneous Reynolds number at peak flow rate ranged from 150 to 450, and the Womersle number ranged from 5 to 17. Pulsatile flow calculations are presented for an idealized geometric representation of the spinal cavity. A linearized Navier-Stokes model of the pulsatile CSF flow was constructed based on MRI flow rate measurements taken on a healthy volunteer. The numerical model was employed to investigate effects of cross-sectional geometry and spinal cord motion on unsteady velocity, shear stress, and pressure gradientfields. The velocity field was shown to be blunt, due to the inertial character of the flow, with velocity peaks located near the boundaries of the spinal canal rather than at the midpoint between boundaries. The pressure gradient waveform was found to be almost exclusively dependent on the flow waveform and cross-sectional area. Characterization of the CSF dynamics in normal and diseased states may be important in understanding the pathophysiology of CSF related disorders. Flow models coupled with MRI flow measurements mnay become a noninvasive tool to explain the abnormal dynamics of CSF in related brain disorders as well as to determine concentration and local distribution of drugs delivered into the CSF space.
Brain and cerebrospinal fluid (CSF) movements are influenced by the anatomy and mechanical properties of intracranial tissues, as well as by the waveforms of driving vascular pulsations. The authors analyze these movements so that the purely hemodynamic factors are removed and the underlying mechanical couplings between brain, CSF, and the vasculature are characterized in global fashion. These measurements were used to calculate a set of impulse response functions or modulation transfer functions, characterizing global aspects of the vasculature's mechanical coupling to the intracranial tissues, the cervical CSF, and the cervical spinal cord. These functions showed that a sudden influx of blood into the head was rapidly accommodated by some type of intracranial reserve or capacity. After this initial response, an equal volume of CSF was driven through the foramen magnum over the next 200-300 ms as the intracranial reserve relaxed to its base-line state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.