Immune checkpoint blockade (ICB) therapy provides remarkable clinical gains and has been very successful in treatment of melanoma. However, only a subset of patients with advanced tumors currently benefit from ICB therapies, which at times incur considerable side effects and costs. Constructing predictors of patient response has remained a serious challenge because of the complexity of the immune response and the shortage of large cohorts of ICB-treated patients that include both 'omics' and response data. Here we build immuno-predictive score (IMPRES), a predictor of ICB response in melanoma which encompasses 15 pairwise transcriptomics relations between immune checkpoint genes. It is based on two key conjectures: (i) immune mechanisms underlying spontaneous regression in neuroblastoma can predict melanoma response to ICB, and (ii) key immune interactions can be captured via specific pairwise relations of the expression of immune checkpoint genes. IMPRES is validated on nine published datasets and on a newly generated dataset with 31 patients treated with anti-PD-1 and 10 with anti-CTLA-4, spanning 297 samples in total. It achieves an overall accuracy of AUC = 0.83, outperforming existing predictors and capturing almost all true responders while misclassifying less than half of the nonresponders. Future studies are warranted to determine the value of the approach presented here in other cancer types.
The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.