Reactive defense mechanisms, such as intrusion detection systems, have made significant efforts to secure a system or network for the last several decades. However, the nature of reactive security mechanisms has limitations because potential attackers cannot be prevented in advance. We are facing a reality with the proliferation of persistent, advanced, intelligent attacks while defenders are often way behind attackers in taking appropriate actions to thwart potential attackers. The concept of moving target defense (MTD) has emerged as a proactive defense mechanism aiming to prevent attacks. In this work, we conducted a comprehensive, in-depth survey to discuss the following aspects of MTD: key roles, design principles, classifications, common attacks, key methodologies, important algorithms, metrics, evaluation methods, and application domains. We discuss the pros and cons of all aspects of MTD surveyed in this work. Lastly, we highlight insights and lessons learned from this study and suggest future work directions. The aim of this paper is to provide the overall trends of MTD research in terms of critical aspects of defense systems for researchers who seek for developing proactive, adaptive MTD mechanisms.
Mobile phones are rapidly becoming small-size general purpose computers, so-called smartphones. However, applications and data stored on mobile phones are less protected from unauthorized access than on most desktop and mobile computers. This paper presents a survey on users' security needs, awareness and concerns in the context of mobile phones. It also evaluates acceptance and perceived protection of existing and novel authentication methods. The responses from 465 participants reveal that users are interested in increased security and data protection. The current protection by using PIN (Personal Identification Number) is perceived as neither adequate nor convenient in all cases. The sensitivity of data stored on the devices varies depending on the data type and the context of use, asking for the need for another level of protection. According to these findings, a two-level security model for mobile phones is proposed. The model provides differential data and service protection by utilizing existing capabilities of a mobile phone for authenticating users.
We analyze the dynamics of repeated interaction of two players in the Prisoner's Dilemma (PD) under various levels of interdependency information and propose an instance-based learning cognitive model (IBL-PD) to explain how cooperation emerges over time. Six hypotheses are tested regarding how a player accounts for an opponent's outcomes: the selfish hypothesis suggests ignoring information about the opponent and utilizing only the player's own outcomes; the extreme fairness hypothesis weighs the player's own and the opponent's outcomes equally; the moderate fairness hypothesis weighs the opponent's outcomes less than the player's own outcomes to various extents; the linear increasing hypothesis increasingly weighs the opponent's outcomes at a constant rate with repeated interactions; the hyperbolic discounting hypothesis increasingly and nonlinearly weighs the opponent's outcomes over time; and the dynamic expectations hypothesis dynamically adjusts the weight a player gives to the opponent's outcomes, according to the gap between the expected and the actual outcomes in each interaction. When players lack explicit feedback about their opponent's choices and outcomes, results are consistent with the selfish hypothesis; however, when this information is made explicit, the best predictions result from the dynamic expectations hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.