Summary
How pseudouridylation (Ψ), the most common and evolutionarily conserved modification of rRNA, regulates ribosome activity is poorly understood. Medically, Ψ is important because the rRNA Ψ synthase, DKC1, is mutated in X-linked Dyskeratosis Congenita (X-DC) and Hoyeraal-Hreidarsson syndrome (HH). Here we characterize ribosomes isolated from a yeast strain where Cbf5p, the yeast homologue of DKC1, is catalytically impaired through a D95A mutation (cbf5-D95A). Ribosomes from cbf5-D95A cells display decreased affinities for tRNA binding to the A- and P-sites as well as the cricket paralysis virus IRES (Internal Ribosome Entry Site), which interacts with both the P- and E-sites of the ribosome. This biochemical impairment in ribosome activity manifests as decreased translational fidelity and IRES-dependent translational initiation, which are also evident in mouse and human cells deficient for DKC1 activity. These findings uncover specific roles for Ψ modification in ribosome-ligand interactions that are conserved in yeast, mouse, and humans.
Defects in ribosome biogenesis and function are present in a growing list of human syndromes associated with cancer susceptibility. One example is X‐linked dyskeratosis congenita (X‐DC) in which the DKC1 gene, encoding for an enzyme that modifies ribosomal RNA, is found to be mutated. How ribosome dysfunction leads to cancer remains poorly understood. A critical cellular response that counteracts cellular transformation is oncogene‐induced senescence (OIS). Here, we show that during OIS, a switch between cap‐ and internal ribosome entry site (IRES)‐dependent translation occurs. During this switch, an IRES element positioned in the 5′untranslated region of p53 is engaged and facilitates p53 translation. We further show that in DKC1m cells, p53 IRES‐dependent translation is impaired during OIS ex vivo and on DNA damage in vivo. This defect in p53 translation perturbs the cellular response that counteracts oncogenic insult. We extend these findings to X‐DC human patient cells in which similar impairments in p53 IRES‐dependent translation are observed. Importantly, re‐introduction of wild‐type DKC1 restores p53 expression in these cells. These results provide insight into the basis for cancer susceptibility in human syndromes associated with ribosome dysfunction.
Summary
Noncoding RNAs control critical cellular processes, although their contribution to disease remains largely unexplored. Dyskerin associates with hundreds of H/ACA small RNAs to generate a multitude of functionally distinct ribonucleoproteins (RNPs). The DKC1 gene, encoding dyskerin, is mutated in the multisystem disorder X-linked Dyskeratosis Congenita (X-DC). A central question is whether DKC1 mutations affect the stability of H/ACA RNPs including those modifying ribosomal RNA (rRNA). We carried out comprehensive profiling of dyskerin-associated H/ACA RNPs, revealing remarkable heterogeneity in the expression and function of subsets of H/ACA small RNAs in X-DC patient cells. Using a novel mass spectrometry approach, we uncovered single-nucleotide perturbations in dyskerin-guided rRNA modifications, providing functional readouts of small RNA dysfunction in X-DC. Strikingly, we identified that the catalytic activity of dyskerin is required for accurate hematopoietic stem cell differentiation. Altogether, these findings reveal that small noncoding RNA dysfunctions may contribute to the pleiotropic manifestation of human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.