Text segmentation, the task of dividing a document into contiguous segments based on its semantic structure, is a longstanding challenge in language understanding. Previous work on text segmentation focused on unsupervised methods such as clustering or graph search, due to the paucity in labeled data. In this work, we formulate text segmentation as a supervised learning problem, and present a large new dataset for text segmentation that is automatically extracted and labeled from Wikipedia. Moreover, we develop a segmentation model based on this dataset and show that it generalizes well to unseen natural text.
Having a reliable accuracy score is crucial for real world applications of OCR, since such systems are judged by the number of false readings. Lexicon-based OCR systems, which deal with what is essentially a multi-class classification problem, often employ methods explicitly taking into account the lexicon, in order to improve accuracy. However, in lexicon-free scenarios, filtering errors requires an explicit confidence calculation. In this work we show two explicit confidence measurement techniques, and show that they are able to achieve a significant reduction in misreads on both standard benchmarks and a proprietary dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.