Callbacks are essential in many programming environments, but drastically complicate program understanding and reasoning because they allow to mutate object's local states by external objects in unexpected fashions, thus breaking modularity. The famous DAO bug in the cryptocurrency framework Ethereum, employed callbacks to steal $150M. We define the notion of Effectively Callback Free (ECF) objects in order to allow callbacks without preventing modular reasoning.An object is ECF in a given execution trace if there exists an equivalent execution trace without callbacks to this object. An object is ECF if it is ECF in every possible execution trace. We study the decidability of dynamically checking ECF in a given execution trace and statically checking if an object is ECF. We also show that dynamically checking ECF in Ethereum is feasible and can be done online. By running the history of all execution traces in Ethereum, we were able to verify that virtually all existing contract executions, excluding these of the DAO or of contracts with similar known vulnerabilities, are ECF. Finally, we show that ECF, whether it is verified dynamically or statically, enables modular reasoning about objects with encapsulated state.
Abstract. Linearizability is one of the main correctness criteria for implementations of concurrent data structures. A data structure is linearizable if its operations appear to execute atomically. Verifying linearizability of concurrent unbounded linked data structures is a challenging problem because it requires correlating executions that manipulate (unbounded-size) memory states. We present a static analysis for verifying linearizability of concurrent unbounded linked data structures. The novel aspect of our approach is the ability to prove that two (unboundedsize) memory layouts of two programs are isomorphic in the presence of abstraction. A prototype implementation of the analysis verified the linearizability of several published concurrent data structures implemented by singly-linked lists.
Concurrent data structures are usually designed to satisfy correctness conditions such as sequential consistency and linearizability. In this paper, we consider the following fundamental question: what guarantees are provided by these conditions for client programs? We formally show that these conditions can be characterized in terms of observational refinement. Our study also provides a new understanding of sequential consistency and linearizability in terms of abstraction of dependency between computation steps of client programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.