Hydrogels based on poly(caprolactone)–b-poly(ethylene glycol)–b-poly(caprolactone) (PCL–PEG–PCL) have been evaluated extensively as potential injectable fillers or depots for controlled release of drugs. Common drawbacks of these copolymer systems include instability of aqueous solutions and low mechanical strength of gels, issues which are commonly overcome by adding pendant groups to the end of the copolymer chains. Here, a systematic study of the effects of increasing polymer molecular weight (MW) is presented, utilizing PEG blocks of MW 2, 4 or 8 kDa. Triblock copolymers were prepared by the ring-opening polymerization of Ɛ-caprolactone by PEG. Copolymers prepared with PEG MW 2 kDa did not form hydrogels at any copolymer molecular weight. Copolymers prepared with PEG MW 4 kDa formed gels at MW between 11 and 13.5 kDa, and copolymers prepared with PEG MW 8 kDa formed gels at MW between 16 and 18 kDa. Copolymers with PEG block 8 kDa formed hydrogels with high viscosity (17,000 Pa·s) and mechanical strength (G’ = 14,000 Pa). The increased gel strength afforded by increased molecular weight represents a simple modification of the reactants used in the reaction feed without added synthetic or purification steps. Shear-thinning of PCL-PEG-PCL triblock copolymer hydrogels allowed for injection through a standard 23G syringe, allowing for potential use as dermal fillers or drug delivery depots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.