Axo-dendritic synaptogenesis was examined in live hippocampal cell cultures using the fluorescent dyes DiO to label dendrites and FM 4-64 to label functional presynaptic boutons. As the first functional synaptic boutons appeared in these cultures, numerous filopodia (up to 10 micron long) were observed to extend transiently (mean lifetime 9.5 min) from dendritic shafts. With progressively increasing numbers of boutons, there were coincident decreases in numbers of transient filopodia and increases in numbers of stable dendritic spines. Dendritic filopodia were observed to initiate physical contacts with nearby axons. This sometimes resulted in filopodial stabilization and formation of functional presynaptic boutons. These findings suggest that dendritic filopodia may actively initiate synaptogenic contacts with nearby (5-10 micron) axons and thereafter evolve into dendritic spines.
Recent studies indicate that active zones (AZs)-sites of neurotransmitter release-may be assembled from preassembled AZ precursor vesicles inserted into the presynaptic plasma membrane. Here we report that one putative AZ precursor vesicle of CNS synapses-the Piccolo-Bassoon transport vesicle (PTV)-carries a comprehensive set of AZ proteins genetically and functionally coupled to synaptic vesicle exocytosis. Time-lapse imaging reveals that PTVs are highly mobile, consistent with a role in intracellular transport. Quantitative analysis reveals that the Bassoon, Piccolo, and RIM content of individual PTVs is, on average, half of that of individual presynaptic boutons and shows that the synaptic content of these molecules can be quantitatively accounted for by incorporation of integer numbers (typically two to three) of PTVs into presynaptic membranes. These findings suggest that AZs are assembled from unitary amounts of AZ material carried on PTVs.
Long term time-lapse imaging reveals that individual synapses undergo significant structural remodeling not only when driven by activity, but also when network activity is absent, raising questions about how reliably individual synapses maintain connections.
Chemical synapses contain multitudes of proteins, which in common with all proteins, have finite lifetimes and therefore need to be continuously replaced. Given the huge numbers of synaptic connections typical neurons form, the demand to maintain the protein contents of these connections might be expected to place considerable metabolic demands on each neuron. Moreover, synaptic proteostasis might differ according to distance from global protein synthesis sites, the availability of distributed protein synthesis facilities, trafficking rates and synaptic protein dynamics. To date, the turnover kinetics of synaptic proteins have not been studied or analyzed systematically, and thus metabolic demands or the aforementioned relationships remain largely unknown. In the current study we used dynamic Stable Isotope Labeling with Amino acids in Cell culture (SILAC), mass spectrometry (MS), Fluorescent Non–Canonical Amino acid Tagging (FUNCAT), quantitative immunohistochemistry and bioinformatics to systematically measure the metabolic half-lives of hundreds of synaptic proteins, examine how these depend on their pre/postsynaptic affiliation or their association with particular molecular complexes, and assess the metabolic load of synaptic proteostasis. We found that nearly all synaptic proteins identified here exhibited half-lifetimes in the range of 2–5 days. Unexpectedly, metabolic turnover rates were not significantly different for presynaptic and postsynaptic proteins, or for proteins for which mRNAs are consistently found in dendrites. Some functionally or structurally related proteins exhibited very similar turnover rates, indicating that their biogenesis and degradation might be coupled, a possibility further supported by bioinformatics-based analyses. The relatively low turnover rates measured here (∼0.7% of synaptic protein content per hour) are in good agreement with imaging-based studies of synaptic protein trafficking, yet indicate that the metabolic load synaptic protein turnover places on individual neurons is very substantial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.