Abstract-Essential hypertension has a genetic basis. Accumulating evidence, including findings of elevation of arterial blood pressure in mice lacking the endothelial nitric oxide synthase (eNOS) gene, strongly suggests that alteration in NO metabolism is implicated in hypertension. There are, however, no reports indicating that polymorphism in the eNOS gene is associated with essential hypertension. We have identified a missense variant, Glu298Asp, in exon 7 of the eNOS gene and demonstrated that it is associated with both coronary spastic angina and myocardial infarction. To explore the genetic involvement of the eNOS gene in essential hypertension, we examined the possible association between essential hypertension and several polymorphisms including the Glu298Asp variant, variable number tandem repeats in intron 4 (eNOS4b/4a), and two polymorphisms in introns 18 and 23. We performed a large-scale study of genetic association using two independent populations from Kyoto (nϭ458; 240 normotensive versus 218 hypertensive subjects) and Kumamoto (nϭ421; 223 normotensive versus 187 hypertensive subjects), Japan. In both groups, a new coding variant, Glu298Asp, showed a strong association with essential hypertension (Kyoto: odds ratio, 2.3 [95% confidence interval, 1.4 to 3.9]; Kumamoto: odds ratio, 2.4 [95% confidence interval, 1.4 to 4.0]). The allele frequencies of 298Asp in hypertensive subjects were significantly higher than those in normotensive subjects in both groups (Kyoto: 0.103 versus 0.050, PϽ0.0017; Kumamoto: 0.120 versus 0.058, PϽ0.0013, respectively). No such disequilibrium between genotypes was significantly associated with any other polymorphisms we examined; the Glu298Asp variant was also not linked to any other polymorphisms. In conclusion, the Glu298Asp missense variant was significantly associated with essential hypertension, which suggests that it is a genetic susceptibility factor for essential hypertension.(Hypertension. 1998;32:3-8.)Key Words: genes Ⅲ nitric oxide synthase Ⅲ hypertension, essential Ⅲ polymorphism Ⅲ genetics W ith a genetic contribution of from 25% to 60%, human essential hypertension has a genetic basis. Among persons younger than age 50 years, essential hypertension occurs 3.8 times more often in those having two or more first-degree relatives who developed high blood pressure before age 55.1 NO synthesis by the vascular endothelium is important for the regulation of vasodilator tone and the control of blood pressure in humans.2 A recent study using mice with disrupted eNOS gene revealed that eNOS function is required for vascular and hemodynamic responses to acetylcholine and that the disruption of the eNOS gene leads to hypertension. 3 Moreover, recent reports demonstrate that whole-body NO production in patients with essential hypertension is diminished under basal conditions, as established by measurement of urinary and plasma nitrate. 4 In addition, the offspring of hypertensive patients exhibit a reduced response to acetylcholine linked to a defect in the NO pathway.5...