The electronic states in isolated single-wall carbon nanotubes (SWCNTs) have been considered as an ideal realization of a Tomonaga-Luttinger liquid (TLL). However, it remains unclear whether one-dimensional correlated states are realized under local environmental effects such as the formation of a bundle structure. Intertube effects originating from other adjacent SWCNTs within a bundle may drastically alter the one-dimensional correlated state. In order to test the validity of the TLL model in bundled SWCNTs, low-energy spin excitation is investigated by nuclear magnetic resonance (NMR). The NMR relaxation rate in bundled mixtures of metallic and semiconducting SWCNTs shows a power-law temperature dependence with a theoretically predicted exponent. This demonstrates that a TLL state with the same strength as that for effective Coulomb interactions is realized in a bundled sample, as in isolated SWCNTs. In bundled metallic SWCNTs, we found a power-law temperature dependence of the relaxation rate, but the magnitude of the relaxation rate is one order of magnitude smaller than that predicted by theory. Furthermore, we found an almost doubled magnitude of the Luttinger parameter. These results indicate suppressed spin excitations with reduced Coulomb interactions in bundled metallic SWCNTs, which are attributable to intertube interactions originating from adjacent metallic SWCNTs within a bundle. Our findings give direct evidence that bundling reduces the effective Coulomb interactions via intertube interactions within bundled metallic SWCNTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.