We have recently characterized the promoter region of the rabbit embryonic smooth muscle myosin heavy chain (SMemb/NMHC-B) gene and identified the 15-bp sequence, designated SE1, located at Ϫ105 from the transcriptional start site as an important regulatory element for its transcriptional activity in a smooth muscle cell (SMC) line. In this study, we attempted to isolate cDNA clones encoding for the transcription factors that control the expression of the SMemb gene through binding to this cis-regulatory element. We screened a gt11 cDNA library prepared from C2/2 cells, a rabbit-derived SMC line, by using a radiolabeled concatenated oligonucleotide containing SE1 as a probe. Sequence analysis revealed that one of the cDNA clones corresponds to the rabbit homologue of basic transcriptional element binding protein-2 (BTEB2), which has previously been identified as one of the Krüppel-like transcription factor. Gel mobility shift assays and antibody supershift analyses with nuclear extracts from C2/2 cells indicate that BTEB2 is a major component of nuclear factorϺSE1 complexes. Furthermore, a glutathione S-transferase-BTEB2 fusion protein binds to the SE1 in a sequence-specific manner. In support of the functionality of BTEB2 binding, basal promoter activity and BTEB2-induced transcriptional activation were markedly attenuated by the disruption of the SE1. In adult rabbit tissues, BTEB2 mRNA was most highly expressed in intestine, urinary bladder, and uterus. BTEB2 mRNA levels were downregulated in rabbit aorta during normal development. Moreover, immunohistochemical analysis indicated a marked induction of BTEB2 protein in the neointimal SMC after balloon injury in rat aorta. These results suggest that
Atherosclerosis is a major cause of coronary heart disease, and matrix metalloproteinases (MMPs) play an important role in atherosclerosis by degrading the extracellular matrix, which results in cardiovascular remodeling. Recent studies have identified enhanced expression of MMPs in the atherosclerotic lesion and their contribution to weakening of the vascular wall by degrading the extracellular matrix. The transcription, enzyme processing, and specific inhibition of MMPs by tissue inhibitors of matrix metalloproteinase (TIMPs) regulate these effects. These processes are also modified by inflammatory cytokines and cell-cell contact signaling. Both animal experiments and clinical sample analysis have shown that balance in expression and activation of MMPs and inhibition by TIMPs is critical for the development of stenotic and aneurysmal change. Polymorphism in the MMP gene promoter contributes to inter-individual differences in susceptibility to coronary heart disease. The development of therapeutic drugs specifically targeting MMPs may thus be useful for the prevention of atherosclerotic lesion progression, plaque rupture, and restenosis.
These results suggest that inhibition of P-selectin-mediated leukocyte recruitment prevents the development of neointimal formation, adventitial inflammation, and vascular shrinking and promotes pseudoendothelialization by luminal smooth muscle cells. This treatment thus beneficially affects vascular remodeling after balloon injury in rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.