1. Effects of two volatile anesthetics [halothane (Hal) and enflurane (Enf)] and a volatile convulsant [hexafluorodiethyl ether (HFE)] on amino acid-induced membrane currents in neurons dissociated from the nucleus tractus solitarius of the rat were examined. The dissociated neurons were voltage clamped in the whole-cell mode of the patch-clamp technique. All drugs were applied with a microperfusion system, termed the "Y-tube" method. 2. The glutamate (Glu)-induced excitatory response was slightly reduced by both the anesthetics. The responses to three agonists at Glu receptor were depressed by Hal (10(-3) M) in the rank order of quisqualate greater than N-methyl-D-aspartate greater than kainate. HFE slightly increased the Glu response at a high concentration of 2 x 10(-3) M. 3. The gamma-aminobutyric acid (GABA)-induced chloride current (ICl) was enhanced by both anesthetics. The dissociation constant (Kd) for the enhancement was 2.3 x 10(-4) M for Hal and 2.1 x 10(-4) M for Enf, and the Hill coefficient was 1.6 for Hal and 1.5 for Enf. HFE depressed the GABA response with a Kd of 8.7 x 10(-5) M and a Hill coefficient of 0.84. 4. Hal (10(-3) M) and Enf (10(-3) M) decreased the Kd of the GABA concentration-response curve from 3.5 x 10(-6) to 10(-6) and 1.9 x 10(-6) M, respectively, without changing the maximum response or the Hill coefficient (1.5). In the presence of HFE (10(-4) M), the Kd was increased to 1.4 x 10(-5) M and the Hill coefficient was slightly changed to 1.2.(ABSTRACT TRUNCATED AT 250 WORDS)
The effects of clorgyline, the MAO-A inhibitor, and lazabemide, the MAO-B inhibitor, on the levels of the hydroxyl radicals appearing in the cerebral ventricles of mice during brain ischemia/reperfusion were examined by using a salicylate trapping method. The amount of hydroxyl radicals formed peaked at 20 min after reperfusion (approximately 150% vs. basal level). The dopamine level markedly increased shortly after the initiation of an ischemic insult and thereafter waned. By contrast, the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) level decreased during a 40-min period of ischemia, gradually returning to the preischemic basal level upon reperfusion. The ischemia reperfusion-induced hydroxyl radical generation was attenuated by 3 mg/kg of clorgyline and lazabemide. Furthermore, mice pretreated with these MAO inhibitors showed decreased DOPAC levels in comparison with those of their respective vehicle-treated control groups; recovery of the reduced DOPAC level was also delayed. In conclusion, it is likely that both type A and type B MAOs participate in the generation of hydroxyl radicals during brain ischemia/reperfusion. This finding suggests the possible use of MAO inhibitors as neuroprotective agents for treating ischemic injury.
The acute anti-ischemic and anti-anoxic effects of dextrorphan (DX) were compared with those of dizocilpine (MK-801) in a variety of animal models, and in vivo and in vitro testings under anoxic conditions. DX reduced the incidence of death in ischemic mice and improved the rotarod performance of mice with brain ischemia. The ischemically-impaired memory of mice treated with DX markedly improved, as shown in the step-through type passive avoidance test, Morris water maze and in the habituation of exploratory behavior test. MK-801 likewise improved the water maze performance of the ischemically-impaired mice, but to a lesser extent. The step-through type passive avoidance performance of ischemic mice was not improved by MK-801. In the passive avoidance task with normal mice, DX, like MK-801, produced anterograde amnesia at doses higher than those needed to attenuate the behavioral effects of ischemia. DX, intravenously or centrally administered, markedly and dose-dependently reduced the incidence of death in mice receiving potassium cyanide (KCN). DX lessened the reduction in adenosine triphosphate (ATP) and increased lactate contents in mice dosed with KCN and also lessened the reduction in ATP in the TCA cycle and oxidative phosphorylation reactions caused by KCN (0.58 mmol/l), whereas MK-801 failed to show any effect on ATP formation pathways in vivo and in vitro, and failed to protect mice against KCN-induced lethal toxicity in vivo. In the in vitro studies, DX increased the adenylate kinase activity of the rat brain homogenate. DX was found to be a cerebroprotectant with anti-ischemic and anti-anoxic actions, the effects probably stemming from its N-methyl-d-aspartate receptor antagonistic property in cooperation with its ATP replenishing action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.