Space flight produces an extreme environment with unique stressors, but little is known about how our body responds to these stresses. While there are many intractable limitations for in-flight space research, some can be overcome by utilizing gene knockout-disease model mice. Here, we report how deletion of Nrf2, a master regulator of stress defense pathways, affects the health of mice transported for a stay in the International Space Station (ISS). After 31 days in the ISS, all flight mice returned safely to Earth. Transcriptome and metabolome analyses revealed that the stresses of space travel evoked ageing-like changes of plasma metabolites and activated the Nrf2 signaling pathway. Especially, Nrf2 was found to be important for maintaining homeostasis of white adipose tissues. This study opens approaches for future space research utilizing murine gene knockout-disease models, and provides insights into mitigating space-induced stresses that limit the further exploration of space by humans.
Using a luciferase reporter assay, we previously demonstrated that a Z-DNA-forming sequence of alternating thymine–guanine repeats in the human heme oxygenase-1 gene (HO-1) promoter is involved in nuclear factor erythroid-derived 2 (NF-E2)–related factor 2 (Nrf2)-mediated HO-1 promoter activation. However, the actual Z-DNA formation in this native genomic locus has not been experimentally demonstrated. To detect Z-DNA formation in vivo, we generated a construct containing the Z-DNA-binding domain of human adenosine deaminase acting on double-stranded RNA 1 fused with enhanced green fluorescence protein, designated as the Z-probe. A chromatin immunoprecipitation assay using an anti-GFP antibody showed that the Z-probe detects the well-characterized Z-DNA formation in the CSF1 promoter. Using this detection system, we demonstrated that the glutathione-depleting agent, diethyl maleate, induced Nrf2-dependent Z-DNA formation in the HO-1 promoter, but not in the thioredoxin reductase 1 gene promoter. Moreover, a time course analysis revealed that Z-DNA formation precedes HO-1 transcriptional activation. Concurrent with Z-DNA formation, nucleosome occupancy was reduced, and the recruitment of RNA polymerase II was enhanced in the HO-1 promoter region, suggesting that Z-DNA formation enhances HO-1 gene transcription. Furthermore, Nrf2-induced BRG1 recruitment to the HO-1 promoter temporarily occurred simultaneously with Z-DNA formation. Thus, these results implicate Nrf2-dependent Z-DNA formation in HO-1 transcriptional activation and suggest the involvement of BRG1 in Z-DNA formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.