We study bifurcation for the constant scalar curvature equation along a one-parameter family of Riemannian metrics on the total space of a harmonic Riemannian submersion. We provide an existence theorem for bifurcation points and a criterion to see that the conformal factors corresponding to the bifurcated metrics must be indeed constant along the fibers. In the case of the canonical variation of a Riemannian submersion with totally geodesic fibers, we characterize discreteness of the set of all degeneracy points along the family and give a sufficient condition to guarantee that bifurcation necessarily occurs at every point where the linearized equation has a nontrivial solution. In the model case of quaternionic Hopf fibrations, we show that symmetry-breaking bifurcation does not occur except at the round metric. ϕ − →
For a closed, connected direct product Riemannian manifold $$(M, g)=(M_1, g_1) \times \cdots \times (M_l, g_l)$$ ( M , g ) = ( M 1 , g 1 ) × ⋯ × ( M l , g l ) , we define its multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] as the totality $$\{f_1^2g_1\oplus \cdots \oplus f_l^2g_l\}$$ { f 1 2 g 1 ⊕ ⋯ ⊕ f l 2 g l } of all Riemannian metrics obtained from multiplying the metric $$g_i$$ g i of each factor $$M_i$$ M i by a positive function $$f_i$$ f i on the total space M. A multiconformal class $$ [\![ g ]\!]$$ [ [ g ] ] contains not only all warped product type deformations of g but also the whole conformal class $$[\tilde{g}]$$ [ g ~ ] of every $$\tilde{g}\in [\![ g ]\!]$$ g ~ ∈ [ [ g ] ] . In this article, we prove that $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of positive scalar curvature if and only if the conformal class of some factor $$(M_i, g_i)$$ ( M i , g i ) does, under the technical assumption $$\dim M_i\ge 2$$ dim M i ≥ 2 . We also show that, even in the case where every factor $$(M_i, g_i)$$ ( M i , g i ) has positive scalar curvature, $$ [\![ g ]\!]$$ [ [ g ] ] contains a metric of scalar curvature constantly equal to $$-1$$ - 1 and with arbitrarily large volume, provided $$l\ge 2$$ l ≥ 2 and $$\dim M\ge 3$$ dim M ≥ 3 .
We construct smooth Riemannian metrics with constant scalar curvature on each Hirzebruch surface. These metrics respect the complex structures, fiber bundle structures, and Lie group actions of cohomogeneity one on these manifolds. Our construction is reduced to an ordinary differential equation called Duffing equation. An ODE for Bach-flat metrics on Hirzebruch surfaces with large isometry group is also derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.