With the increasing application of hot-stamped parts to automobile bodies and warm-drawn parts of magnesium alloys to electrical devices, simulation has become a basic approach to formability evaluation when designing parts and tools. However, the thermal-mechanical coupling phenomena induced in the hot-stamping process and warm-drawing process are complicated. To accurately simulate these complicated phenomena, a finite-element model for B-pillar hot stamping was created and transient temperature distribution was simulated. The thickness distribution and hardness distribution in a hot stamped B-pillar were predicted. Furthermore, a temperature-dependent anisotropic material model combined with the Hill48 yield function was developed for the simulation of the warm-drawing of magnesium alloys. The predicted results agreed well with experimental ones and simulation accuracy was demonstrated using the newly developed models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.