BDNF (brain-derived neurotrophic factor) is a member of the neurotrophin family which affects the proliferation and survival of neurons. Using an immunocytochemical method, we examined the expression of BDNF and its receptor, TrkB, in the taste bud cells of the circumvallate papillae of normal mice and of mice after transection of the glossopharyngeal nerves. We additionally observed the expression of BDNF and TrkB in the developing circumvallate papillae of late prenatal and early postnatal mice. In normal untreated mice, BDNF was expressed in most of the taste bud cells; TrkB was detected in the plasma membrane of taste bud cells and in the nerve fibers. Double-labeling studies showed that BDNF and NCAM (neural cell adhesion molecule) or TrkB and NCAM colocalized in some of the taste bud cells, but that most taste bud cells were immunopositive for only BDNF or TrkB. NCAM-immunoreactive cells are known to be type-III cells, which have afferent synaptic contacts with the nerve terminals. Five days after denervation, the number of taste buds and nerve fibers markedly decreased; however, the remaining taste bud cells still expressed BDNF and TrkB. By 10 days after denervation, most of the taste buds had disappeared, and there were a few TrkB-immunoreactive nerve fibers in the connective tissue core. By 4 weeks after denervation, numerous TrkB-immunoreactive nerve fibers had invaded the papillae, and a few taste buds expressing BDNF and TrkB had regenerated. At E (embryonic day) 15 during development, the circumvallate papillae appeared, and then TrkB-immunoreactive nerve fibers entered the connective tissue core, and some of these fibers further invaded among the dorsal epithelial cells of the papillae. TrkB-immunoreactive oval-shaped cells were occasionally found in the dorsal epithelium. Such TrkB-immunoreactive nerve fibers and cells were also observed at E16-18. However, BDNF was not expressed in the papillae through the late prenatal days of E15 to E18. At P (postnatal day) 0, a cluster of BDNF-and TrkB-immunoreactive cells appeared in the dorsal epithelium of the papillae, and was presumed to be primitive taste buds. We conclude that TrkB-immunoreactive nerve fibers are necessary for papillary and taste bud formation during development and for the regeneration of taste buds after denervation. BDNF in the taste bud cells may act as a neurotrophic factor for innervating sensory neurons--through TrkB receptors of the axons of those neurons, and also may exert autocrine and paracrine trophic actions on neighboring taste bud cells by binding to their TrkB receptors.
GDNF (glial cell line-derived neurotrophic factor) affects the survival and maintenance of central and peripheral neurons. Using an immunocytochemical method, we examined whether the taste bud cells in the circumvallate papillae of normal mice expressed GDNF and its GFR alpha 1 receptor. Using double immunostaining for either of them and NCAM, PGP 9.5, or alpha-gustducin, we additionally sought to determine what type of taste bud cells expressed GDNF or GFR alpha 1, because NCAM is reported to be expressed in type-III cells, PGP 9.5, in type-III and some type-II cells, and alpha-gustducin, in some type-II cells. Normal taste bud cells expressed both GDNF and GFR alpha 1. The percentage of GDNF-immunoreactive cells among all taste bud cells was 31.63%, and that of GFR alpha 1-immunoreactive cells, 83.21%. Confocal laser scanning microscopic observations after double immunostaining showed that almost none of the GDNF-immunoreactive cells in the taste buds were reactive with anti-NCAM or anti-PGP 9.5 antibody, but could be stained with anti-alpha-gustducin antibody. On the other hand, almost all anti-PGP 9.5- or anti-alpha-gustducin-immunoreactive cells were positive for GFR alpha 1. Thus, GDNF-immunoreactive cells did not include type-III cells, but type-II cells, which are alpha-gustducin-immunoreactive; on the other hand, GFR alpha 1-immunoreactive cells included type-II and -III cells, and perhaps type-I cells. We conclude that GDNF in the type-II cells may exert trophic actions on type-I, -II, and -III taste bud cells by binding to their GFR alpha 1 receptors.
BackgroundFractional exhaled nitric oxide concentration (FeNO) is widely used to support diagnosis and monitoring of bronchial asthma (BA). Tsoukias and George proposed a two‐compartment model (2CM) for assessing the alveolar concentration of NO, referred to as CANO(2CM), while Condorelli et al proposed a model based on the trumpet shape of the airway tree and axial diffusion (TMAD), referred to as CANO(TMAD). In addition, Högman et al proposed non‐linear model, referred to as CANO(non‐linear).ObjectiveWe examined associations between the expression of inducible nitric oxide synthase (iNOS) mRNA in airway cells (ACs) by bronchoscopy and NO‐parameters calculated by the three methods and identified which of them accurately reflected expression of iNOS mRNA from different airway portions.MethodsWe retrospectively analysed data of 18 patients with stable, mild‐moderate asthma, including 10 steroid‐naïve BA (snBA) patients. Samples were obtained from airway brushings and bronchoalveolar lavage (BAL). Expressions of iNOS protein in tissue samples were evaluated by immunostaining. The iNOS mRNA in ACs was measured by qPCR. NO‐parameters calculated by the three methods above and evaluated whether they were associated with iNOS mRNA in ACs derived from proximal (2nd carina), distal (10‐15th) airways and alveolar regions.ResultsImmunostaining revealed expression of iNOS proteins mainly in epithelial cells in the airways, while it was mainly expressed in macrophages in the alveolar region in the snBA group. The iNOS mRNA expression was increased in both proximal and distal ACs in the snBA group compared with steroid‐treated BA group (stBA). CANO(2CM) negatively associated with FEV 1 (%predicted) and also associated with iNOS mRNA in distal ACs significantly. However, CANO(TMAD) and CANO(non‐linear) showed no correlation with lung function nor iNOS mRNA expression in any portions of ACs.ConclusionsThese results suggested that CANO(2CM) reflected distal airway inflammation in steroid‐naïve asthma.
Neurotrophic factors are thought to function in the survival and maintenance of the taste buds and nerve fibers innervating them. Laser capture microdissection (LCM) coupled with the reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the mRNA of neurotrophic factors and their receptors in the taste buds of adult mouse circumvallate papillae. Results showed mRNAs of the ciliary neurotrophic factor (CNTF), its receptor (CNTFR), glial cell line-derived neurotrophic factor (GDNF), GDNF family receptors alpha-1 (GFRalpha-1), GFRalpha-2, and RET tyrosine kinase receptor (RET), neurotrophin (NT)3, NT4/5, tyrosine kinase (Trk) C, nerve growth factor (NGF), and TrkA were expressed in the isolated taste buds. Among these neurotrophic factors, GDNF, GFRalpha-1, GFRalpha-2, NT3, NT4/5, NGF, and TrkA were previously found in the taste buds immunohistochemically and were detected at the mRNA level in the present study. The present immunohistochemical study revealed that CNTF, CNTFR, and the RET tyrosine kinase receptor, which binds GDNF family/ receptor complexes, were also expressed in the taste buds. However, by in situ hybridization, mRNAs of CNTF and RET were not detected in the taste buds from adult mice although they were found in those from early postnatal mice. CNTFR mRNA did not show any specific pattern in the taste buds. Moreover, mRNA expressions of NT4/5 and TrkC was re-examined by in situ hybridization; however no specific pattern was found for them in the taste buds. In summary, LCM is a useful tool for the detection of a relatively small amount of mRNA, such as that of neurotrophic factors and receptors in the taste buds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.