In the present study we identified the epitopes of antibodies against amyloid beta-(1-42)-peptide (Abeta1-42): 4G8 reacted with peptides corresponding to residues 17-21, 6F/3D reacted with peptides corresponding to residues 9-14, and anti 5-10 reacted with peptides corresponding to residues 5-10. The study also yielded some insight into the Abeta1-42 structures resulting from differences in pH. An ELISA study using monoclonal antibodies showed that pH-dependent conformational changes occur in the 6F/3D and 4G8 epitopes modified at pH 4.6, but not in the sequences recognized by anti 1-7 and anti 5-10. This was unique to Abeta1-40 and Abeta1-42 and did not occur with Abeta1-16 or Abeta17-42. The reactivity profile of 4G8 was not affected by blockage of histidine residues of pH-modified Abeta1-40 and Abeta1-42 with diethyl pyrocarbonate; however, the mutant [Gln(11)]Abeta1-40 abrogated the unique pH-dependence towards 4G8 observed with Abeta1-40. These findings suggest that these epitopes are cryptic at pH 4.6, and that Glu(11) is responsible for the changes. We suggest that the abnormal folding of 6F/3D epitope affected by pH masked the 4G8 epitope. A study of the binding of metal ions to Abeta1-42 suggested that Cu(2+) and Zn(2+) induced a conformational transition around the 6F/3D region at pH 7.4, but did not affect the region when it was modified at pH 4.6. However, Fe(2+) had no effect, irrespective of pH. Abeta modified at pH 4.6 appeared to be relatively resistant to proteinase K compared with Abetas modified at pH 7.4, and the former might be preferentially internalized and accumulated in a human glial cell. Our findings suggest the importance of microenvironmental changes, such as pH, in the early stage of formation of Abeta aggregates in the glial cell.
In the present study we identified the epitopes of antibodies against amyloid β-(1–42)-peptide (Aβ1–42): 4G8 reacted with peptides corresponding to residues 17–21, 6F/3D reacted with peptides corresponding to residues 9–14, and anti 5-10 reacted with peptides corresponding to residues 5–10. The study also yielded some insight into the Aβ1–42 structures resulting from differences in pH. An ELISA study using monoclonal antibodies showed that pH-dependent conformational changes occur in the 6F/3D and 4G8 epitopes modified at pH 4.6, but not in the sequences recognized by anti 1-7 and anti 5-10. This was unique to Aβ1–40 and Aβ1–42 and did not occur with Aβ1–16 or Aβ17–42. The reactivity profile of 4G8 was not affected by blockage of histidine residues of pH-modified Aβ1–40 and Aβ1–42 with diethyl pyrocarbonate; however, the mutant [Gln11]Aβ1–40 abrogated the unique pH-dependence towards 4G8 observed with Aβ1–40. These findings suggest that these epitopes are cryptic at pH4.6, and that Glu11 is responsible for the changes. We suggest that the abnormal folding of 6F/3D epitope affected by pH masked the 4G8 epitope. A study of the binding of metal ions to Aβ1–42 suggested that Cu2+ and Zn2+ induced a conformational transition around the 6F/3D region at pH7.4, but did not affect the region when it was modified at pH4.6. However, Fe2+ had no effect, irrespective of pH. Aβ modified at pH 4.6 appeared to be relatively resistant to proteinase K compared with Aβs modified at pH7.4, and the former might be preferentially internalized and accumulated in a human glial cell. Our findings suggest the importance of microenvironmental changes, such as pH, in the early stage of formation of Aβ aggregates in the glial cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.