Caged compounds are useful tools for precise spatiotemporal modulation of cell functions, but in most cases uncaging requires ultraviolet (UV) light, which is cytotoxic and has limited tissue penetration. Therefore, caged compounds that can be activated by longer-wavelength light are required. Here we describe a novel photoelimination reaction of 4-aryloxy boron dipyrromethene (BODIPY) derivatives and show that BODIPY can function as a caging group for phenol groups. We developed a novel BODIPY-caged histamine compound, which is photoactivatable with blue-green visible light to stimulate cultured HeLa cells in a spatiotemporally well-controlled manner. This caging strategy is expected to be widely applicable to develop tools for probing various cellular functions.
We developed a novel method to spatiotemporally control activity of signaling molecules. A newly synthesized photocaged rapamycin derivative induced rapid dimerization of FKBP (FK-506 binding protein) and FRB (FKBP-rapamycin binding protein) upon UV irradiation. With this system and the spatially confined UV-irradiation, we achieved subcellularly localized activation of Rac, a member of small GTPases. Our technique offers a powerful approach to studies of dynamic intracellular signaling events.
Although many organic/inorganic compounds that release nitric oxide (NO) upon photoirradiation (phototriggered caged-NOs) have been reported, their photoabsorption wavelengths mostly lie in the UV region, because X-NO bonds (X=heteroatom and metal) generally have rather strong π-bond character. Thus, it is intrinsically difficult to generate organic compounds that release NO under visible light irradiation. Herein, the structures and properties of N-pyramidal nitrosamine derivatives of 7-azabicyclo[2.2.1]heptanes that release NO under visible light irradiation are described. Bathochromic shifts of the absorptions of these nitrosamines, attributed to HOMO (n)-LUMO (π*) transitions associated with the nonplanar structure of the N-NO moiety, enable the molecules to absorb visible light, which results in N-NO bond cleavage. Thus, these compounds are innate organic caged-NOs that are uncaged by visible light.
Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events1, 2. Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time3. In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac4, Cdc424, RhoA4 and Ras5, in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells6. Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level6.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.