Purpose
The pathological diagnosis of surgically resected gastric cancer involves both a macroscopic diagnosis by gross observation and a microscopic diagnosis by microscopy. Macroscopic diagnosis determines the location and stage of the disease and the involvement of other organs and surgical margin. Lesion recognition is thus an important diagnostic step that requires a skilled pathologist. Nonetheless, artificial intelligence (AI) technologies could allow even inexperienced doctors and laboratory technicians to examine surgically resected specimens without the need for pathologists. However, organ imaging conditions vary across hospitals, and an AI algorithm created in one setting may not work properly in another. Thus, we identified and standardized factors affecting the quality of pathological macroscopic images, which could further affect lesion identification using AI.
Methods
We examined necessary image standardization for developing cancer detection AI for surgically resected gastric cancer by changing the following imaging conditions: focus, resolution, brightness, and contrast.
Results
Regarding focus, brightness, and contrast, the farther away the test data were from the training macro image, the less likely the inference was to be correct. Little change was observed for resolution, even with differing conditions for the training and test data. Regarding focus, brightness, and contrast, there were conditions appropriate for AI. Contrast, in particular, was far from the conditions appropriate for humans.
Conclusion
Standardizing focus, brightness, and contrast is important in the development of AI methodologies for lesion detection in surgically resected gastric cancer. This standardization is essential for AI to be implemented across hospitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.