Patients with Behçet's disease (BD) suffer from episodic inflammation often affecting the orogenital mucosa, skin, and eyes. To discover new BD-susceptibility loci, we performed a genome-wide association study (GWAS) of 779,465 SNPs with imputed genotypes in 1,209 Turkish BD patients and 1,278 controls. We identified novel associations at CCR1, STAT4, and KLRC4. Additionally, two SNPs in ERAP1, encoding ERAP1 p.Asp575Asn and p.Arg725Gln, recessively conferred disease risk. These findings replicated in 1,468 independent Turkish and/or 1,352 Japanese samples (combined meta-analysis p < 2 × 10−9). We also found evidence for interaction between HLA-B*51 and ERAP1 (p = 9 × 10−4). The CCR1 and STAT4 variants were associated with gene expression differences. Three risk loci shared with ankylosing spondylitis and psoriasis (MHC-I, ERAP1, and IL23R, and the MHC-I-ERAP1 interaction), as well as two loci shared with inflammatory bowel disease (IL23R and IL10) implicate shared pathogenic pathways in the spondyloarthritides and BD.
Behçet's disease is a chronic systemic inflammatory disorder characterized by four major manifestations: recurrent ocular symptoms, oral and genital ulcers and skin lesions. We conducted a genome-wide association study in a Japanese cohort including 612 individuals with Behçet's disease and 740 unaffected individuals (controls). We identified two suggestive associations on chromosomes 1p31.3 (IL23R-IL12RB2, rs12119179, P = 2.7 x 10(-8)) and 1q32.1 (IL10, rs1554286, P = 8.0 x 10(-8)). A meta-analysis of these two loci with results from additional Turkish and Korean cohorts showed genome-wide significant associations (rs1495965 in IL23R-IL12RB2, P = 1.9 x 10(-11), odds ratio = 1.35; rs1800871 in IL10, P = 1.0 x 10(-14), odds ratio = 1.45).
Disruption of the precise balance of positive and negative molecular regulators of blood and lymphatic vessels can lead to myriad diseases that affect one in four people worldwide. Although dozens of natural inhibitors of hemangiogenesis have been identified, an endogenous selective inhibitor of lymphatic vessels has not yet been described. We report the existence of a secreted, splice variant of vascular endothelial growth factor receptor-2 (sVegfr-2) that inhibits developmental and reparative lymphangiogenesis by blocking Vegf-c. Tissue-specific loss of sVegfr-2 in mice induced, at birth, spontaneous lymphatic invasion of the normally alymphatic cornea and hyperplasia of skin lymphatics without accompanying changes in blood vasculature. sVegfr-2 inhibited lymphangiogenesis but not hemangiogenesis induced by corneal suture injury or transplantation, enhanced corneal allograft survival, and suppressed lymphangioma cellular proliferation. Naturally occurring sVegfr-2 is a molecular uncoupler of blood and lymphatic vessels whose modulation might have a therapeutic role in lymphatic vascular malformations, transplantation, and potentially in tumor lymphangiogenesis and lymphedema.
A member of a novel family of the human major histocompatibility complex (MHC) class I genes termed MIC (MHC class I chain-related genes), MICA, has been recently identified near the HLA-B gene on the short arm of human chromosome 6. The predicted amino acid sequence of the MICA chain suggests that it folds similarly to typical class I chains and may have the capacity to bind peptides or other short ligands. Therefore, MICA is predicted to have a specialized function in antigen presentation or T cell recognition. During nucleotide sequence analyses of the MICA genomic clone, we found a triplet repeat microsatellite polymorphism of (GCT͞AGC) n in the transmembrane (TM) region of the MICA gene. In 68 HLA homozygous B cell lines, 5 distinct alleles of this microsatellite sequence were detected. One of them contained an additional one base insertion that created a frameshift mutation resulting in a premature termination codon in the TM region. This particular allele may encode a soluble, secreted form of the MICA molecule. In addition, we have investigated this microsatellite polymorphism in 77 Japanese patients with Behçet disease, which is known to be associated with HLA-B51. The microsatellite allele consisting of 6 repetitions of GCT͞AGC was present at significantly higher frequency in the patient group (Pc ؍ 0.00055) than in a control population. Furthermore, the (GCT͞AGC) 6 allele was present in all B51 positive patients and in an additional 13 B51 negative patients. These results suggest the possibility of a primary association of Behçet disease with MICA rather than HLA-B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.