Studying protein components of large intracellular complexes by in-cell NMR has so far been impossible because the backbone resonances are unobservable due to their slow tumbling rates. We describe a methodology that overcomes this difficulty through selective labeling of methyl groups, which possess more favorable relaxation behavior. Comparison of different in-cell labeling schemes with three different proteins, calmodulin, NmerA, and FKBP, shows that selective labeling with [(13)C]methyl groups on methionine and alanine provides excellent sensitivity with low background levels at very low costs.
Homonuclear 13C-13C couplings can significantly reduce the sensitivity and resolution of multidimensional NMR experiments. The most important of these couplings is the 13Calpha-13Cbeta coupling, and several different methods have been developed to eliminate its effect from spectra used for backbone assignment, including short or constant-time evolution periods, selectively labeled amino acids, and multiple-band decoupling sequences. In this communication we show that postacquisition deconvolution of the spectra with a maximum entropy algorithm can be superior to experimental decoupling. The method is very robust, does not introduce shifts of the resonance positions, and simplifies the measurement of the most important NMR experiments for protein backbone assignment.
Objectives:Plasma-free amino acid (PFAA) profiles have been associated with a future risk of developing diabetes or cardiovascular disease in nondiabetic subjects. These PFAA alterations might predominantly result from the metabolic shift caused by insulin resistance and visceral fat deposition. The variety of PFAA profiles within diabetic subjects is not well researched. In this study, we focused on type 2 diabetic subjects and examined the association between PFAA profiles and insulin- and glucose-related variables.Methods:Fifty-one Japanese subjects diagnosed with type 2 diabetes were recruited from an outpatient clinic. The plasma concentrations of 21 amino acids; glucose-related markers including glucose, hemoglobin A1c (HbA1c), glycoalbumin and 1,5-anhydroglucitol; insulin-related markers including insulin, C-peptide, and the homeostasis model assessment of insulin resistance; and adipocytokines including adiponectin and leptin were determined. The association of PFAA and other metabolic profiles were analyzed, and stratified analyses of the PFAAs and clinical characteristics were performed according to the fasting plasma insulin and HbA1c levels. In addition, the PFAA indices that correlate to visceral fat obesity were evaluated.Results:Although strong correlations between PFAAs and glucose-related markers were not observed, several amino acids (branched-chain amino acids, tryptophan, alanine, tyrosine, glutamate and proline) and PFAA indices that evaluate visceral obesity were highly correlated with insulin-related markers and adiponectin (P<0.001). In the group of diabetic patients with hyperinsulinemia, the amino acid levels were significantly increased, which generally demonstrated good concordance with insulin-related markers and adiponectin levels.Conclusions:The PFAA profiles in diabetic patients were strongly associated with hyperinsulinemia and hypoadiponectinemia, which might become risk evaluation factors for the development of cardiovascular diseases.
The nature of the supramolecular complex between fibrillar collagen and collagen-binding proteins (CBPs) has hindered detailed X-ray and NMR analyses of the ligand-recognition mechanism at atomic resolution because of the lack of appropriate approaches for studying large heterogeneous supramolecular complexes. Recently, we proposed an NMR method, termed transferred cross-saturation (TCS), that enables the rigorous identification of contact residues in a huge protein complex. Here we used TCS to study the supramolecular complex between the A3 domain of von Willebrand factor and fibrillar collagen, which allowed the successful determination of the ligand-binding site of the A3 domain. The binding site of the A3 domain was located at its hydrophobic 'front' surface and was completely different from that of the I domain from the a2 subunit of integrin (alpha2-I domain), which was reported to be the hydrophilic 'top' surface of alpha2-I, although the A3 domain and the alpha2-I domain share a similar fold and possess the identical function of collagen binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.