Cancer-associated fibroblasts (CAFs) are the key components of the densely proliferated stroma in pancreatic ductal adenocarcinoma (PDAC) and contribute to tumor progression and drug resistance. CAFs comprise heterogeneous subpopulations playing unique and vital roles. However, the commonly used mouse models have not been able to fully reproduce the histological and functional characteristics of clinical human CAF. Here, we generated a human cell-derived stroma-rich CDX (Sr-CDX) model, to reproduce the clinical tumor microenvironment. By co-transplanting human adipose-derived mesenchymal stem cells (AD-MSCs) and a human PDAC cell line (Capan-1) into mice, the Sr-CDX model recapitulated the characteristics of clinical pancreatic cancer, such as accelerated tumor growth, abundant stromal proliferation, chemoresistance, and dense stroma formed from the heterogeneous CAFs. Global RNA sequencing, single-cell based RNA sequencing, and histological analysis of CAFs in the Sr-CDX model revealed that the CAFs of the Sr-CDX mice were derived from the transplanted AD-MSCs and composed of heterogeneous subpopulations of CAF, including known and unknown subtypes. These lines of evidences suggest that our new tumor-bearing mouse model has the potential to address an open question in CAF research, that is the mechanism of CAF differentiation.
Cancer-associated fibroblasts (CAFs) are key components of the dense, proliferating stroma observed in pancreatic ductal adenocarcinoma (PDAC), and CAF subpopulations drive tumor heterogeneity and play a major role in PDAC progression and drug resistance. CAFs consist of heterogenous subpopulations such as myoblastic CAF (myCAF) and inflammatory CAF (iCAF), and each has distinct essential roles. However, it is not clear how CAF subpopulations are formed in PDAC. Adiposederived MSCs (AD-MSCs), which possess a high multilineage potential and self-renewal capacity, are reported to be one of the in vivo CAF sources. Here, we aimed to investigate whether AD-MSCs can act as precursors for CAFs in vitro. We recorded morphological features and collected omics data from two in vitro co-culture models for recapitulating clinical PDAC. Additionally, we tested the advantages of the co-culture model in terms of accurately modeling morphology and CAF heterogeneity. We showed that AD-MSCs differentiate into two distinct CAF subpopulations: Direct contact co-culture with PDAC cell line Capan-1 induced differentiation into myCAFs and iCAFs, while indirect co-culture induced differentiation into only iCAFs. Using these co-culture systems, we also identified novel CAF markers that may be helpful for elucidating the mechanisms of CAFs in the tumor microenvironment (TME). In conclusion, AD-MSCs can differentiate into distinct CAF subtypes depending on the different co-culture conditions in vitro, and the identification of potential CAF markers may aid in future investigations of the mechanisms underlying the role of CAFs in the TME.
A DNA/protamine complex powder was prepared by reaction between DNA and protamine sulfate solution with stirring in order to develop a new injectable biomaterials for dental therapy. The powder of DNA/protamine complex became paste by kneading the complex powder and distilled water. Complex formation was confirmed by FT-IR measurement. The complex paste had a porous structure and its viscosity was approximately 280.1 Pas. The paste could easily pass through a needle of 0.25 mm internal diameter. It seemed that DNA/protamine complex paste has suitable viscosity for clinical use as an injectable biomaterial. Although, the complex paste delayed the growth speed of Staphylococcus aureus, Pseudomonas aeruginosa, Porphyromonas gingivalis and Prevotella intermedia for limited periods, it cannot kill and inhibit growing bacteria. The complex paste disk showed a mild tissue response and gradually degraded after the implantation into the soft tissue of rats. These results suggested that this DNA/protamine complex paste could be a useful material for a biodegradable biomaterial. In particular, this paste will be applicable as an injectable biomaterial using syringe for the repair of defects of living tissue, GBR treatment and/or GTR treatment in dentistry.
This study describes a perfusable and stretchable culture system for a skin-equivalent. The system is comprised of a flexible culture device equipped with connections that fix vascular channels of the skin-equivalent and functions as an interface for an external pump. Furthermore, a stretching apparatus for the culture device can be fabricated using rapid prototyping technologies, which allows for easy modifications of stretching parameters. When cultured under dynamically stretching and perfusion conditions, the skin-equivalent exhibits improved morphology. The epidermal layer becomes thicker and more differentiated than that cultured without the stretching stimuli or under statically-stretched conditions, and the dermal layer was more densely populated with dermal fibroblasts than that cultured without perfusion due to the nutrient and oxygen supply by perfusion via the vascular channels. Therefore, the system is useful for the improvement and biological studies of skin-equivalents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.