Globally, water is an important resource required for the survival of human beings. Water is a scarce resource in the semi-arid environments, including South Africa. In South Africa, several studies have quantified evapotranspiration (ET) in different ecosystems at a local scale. Accurate spatially explicit information on ET is rare in the country mainly due to lack of appropriate tools. In recent years, a remote sensing ET product from the MODerate Resolution Imaging Spectrometer (MOD16) has been developed. However, its accuracy is not known in South African ecosystems. The objective of this study was to validate the MOD16 ET product using data from two eddy covariance flux towers, namely; Skukuza and Malopeni installed in a savanna and woodland ecosystem within the Kruger National Park, South Africa. Eight day cumulative ET data from the flux towers was calculated to coincide with the eight day MOD16 products over a period of 10 years from 2000 to 2010. The Skukuza flux tower results showed inconsistent comparisons with MOD16 ET. The Malopeni site achieved a poorer comparison with MOD16 ET compared to the Skukuza, and due to a shorter measurement period, data validation was performed for 2009 only. The inconsistent comparison of MOD16 and flux tower-based ET can be attributed to, among other things, the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. OPEN ACCESSRemote Sens. 2014, 6 7407 MODIS pixel. MOD16 is important for global inference of ET, but for use in South Africa's integrated water management, a locally parameterized and improved product should be developed.
Abstract. Flux towers provide essential terrestrial climate, water, and radiation budget information needed for environmental monitoring and evaluation of climate change impacts on ecosystems and society in general. They are also intended for calibration and validation of satellite-based Earth observation and monitoring efforts, such as assessment of evapotranspiration from land and vegetation surfaces using surface energy balance approaches.In this paper, 15 years of Skukuza eddy covariance data, i.e. from 2000 to 2014, were analysed for surface energy balance closure (EBC) and partitioning. The surface energy balance closure was evaluated using the ordinary least squares regression (OLS) of turbulent energy fluxes (sensible (H) and latent heat (LE)) against available energy (net radiation (Rn) less soil heat (G)), and the energy balance ratio (EBR). Partitioning of the surface energy during the wet and dry seasons was also investigated, as well as how it is affected by atmospheric vapour pressure deficit (VPD), and net radiation.After filtering years with low-quality data (2004)(2005)(2006)(2007)(2008), our results show an overall mean EBR of 0.93. Seasonal variations of EBR also showed the wet season with 1.17 and spring (1.02) being closest to unity, with the dry season (0.70) having the highest imbalance. Nocturnal surface energy closure was very low at 0.26, and this was linked to low friction velocity during night-time, with results showing an increase in closure with increase in friction velocity.The energy partition analysis showed that sensible heat flux is the dominant portion of net radiation, especially between March and October, followed by latent heat flux, and lastly the soil heat flux, and during the wet season where latent heat flux dominated sensible heat flux. An increase in net radiation was characterized by an increase in both LE and H, with LE showing a higher rate of increase than H in the wet season, and the reverse happening during the dry season. An increase in VPD is correlated with a decrease in LE and increase in H during the wet season, and an increase in both fluxes during the dry season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.