We analyzed RASSF1A and NORE1A methylation and BRAF mutation in 89 thyroid tumors, 42 non-neoplastic thyroid tissues and three thyroid tumor cell lines using polymerase chain reaction (PCR), methylation-specific PCR, Western blotting and DNA sequencing in order to study thyroid tumor pathogenesis and progression. RASSF1A promoter methylation was present in all three thyroid cell lines and in 27/78 (35%) of benign and malignant thyroid tumors. We showed for the first time that there was generally good agreement between RASSF1A methylation status and RASSF1A protein expression. We also examined for the first time NORE1A promoter region methylation in thyroid cell lines and primary tumors and showed that two of three thyroid cell lines were methylated in the NORE1A promoter region, while all primary thyroid tumors analyzed (n=51) were unmethylated. BRAF mutation was present in 38% of papillary thyroid carcinomas (PTC), including 20% of PTC with a follicular variant pattern and 67% of the tall cell variant of PTC. Hyalinizing trabecular tumors (n=23), which had nuclear features similar to PTC, did not have BRAF mutations, indicating that the presence of BRAF mutations can help to separate these two tumor types. Phospho-MEK expression was increased in the NPA cell line, which had a BRAF mutation, supporting the importance of the BRAF pathway alterations in PTC pathogenesis. These results indicate that RASSF1A epigenetic changes are an early event in thyroid tumor pathogenesis and progression and that NORE1A methylation is uncommon in primary thyroid tumors. BRAF mutation occurs later in thyroid tumor progression and is restricted mainly to PTC and anaplastic thyroid carcinoma.
BRAF mutations have been detected in 30% to 80% of papillary thyroid carcinomas (PTC). Several detection methods for BRAF mutation have been reported, but a direct comparison between different assay methods has not been previously reported. In this study, we examined the diagnostic utility of BRAF (T1799A) mutation in 71 cases of thyroid fine needle aspiration specimens using 4 different methods, including direct sequencing, Colorimetric Mutector Assay, real-time LightCycler polymerase chain reaction (LC PCR) with fluorescence resonance energy transfer probes, and an allele-specific LC PCR with CYBR green 1. BRAF mutation was detected in 31 of 58 cases of PTC, but not in 13 cases of non-PTC lesions. The 4 assay methods used in this study were sensitive, reliable, and comparable with each other (100% of specificity and 53.5% of sensitivity). PTC harboring BRAF mutation had higher extrathyroidal invasion and/or lymph node metastasis than PTC with wild-type BRAF. BRAF mutation analysis should be useful for the clinical diagnosis of PTC in cases of indeterminate fine needle aspiration specimen, because of the high degree of specificity. Our results indicate that there is similar sensitivity for the four detection methods. However, the allele-specific LC PCR with CYBR green 1 method is most rapid, easier to perform, and least expensive technique, and it can be readily performed in most molecular diagnostic laboratories.
The expression of thyroid transcription factor-1 in normal and neoplastic tissues and cell lines of the human lung was investigated using immunohistochemistry and in situ hybridization in conjunction with reverse transcription polymerase chain reaction. In normal lung tissues, immunoproducts of thyroid transcription factor-1 were observed in the nuclei of alveolar cells and bronchiolar cells. Interestingly, in distal bronchioles, immunohistochemistry and in situ hybridization revealed that thyroid transcription factor-1 was present not only in nonciliated cells (Clara cells) but also in ciliated cells and basal cells. In neoplastic tissues, thyroid transcription factor-1 was demonstrated in adenocarcinomas and small cell lung carcinomas with high frequency: 96% and 89% of cases, respectively. Thyroid transcription factor-1 was not detected in squamous cell carcinomas and large cell carcinomas. The strong immunoreactivity of thyroid transcription factor-1 or simultaneous expressions of thyroid transcription factor-1 and surfactant protein A tended to correlate with the differentiation phenotypes in adenocarcinomas; they were more frequently present in the well-differentiated type than were moderately and/or poorly differentiated types. By reverse transcription polymerase chain reaction, expression of thyroid transcription factor-1 messenger RNA was observed in squamous cell carcinomas in addition to in adenocarcinomas and small cell lung carcinomas, and this finding was confirmed in the cell lines from squamous cell carcinomas. Only one case of 99 adenocarcinomas that originated in various organs other than lung and thyroid immunohistochemically expressed thyroid transcription factor-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.