The main purpose of pre-transcatheter aortic valve implantation (TAVI) cardiac computed tomography (CT) for patients with severe aortic stenosis is aortic annulus measurements. However, motion artifacts present a technical challenge because they can reduce the measurement accuracy of the aortic annulus. Therefore, we applied the recently developed second-generation whole-heart motion correction algorithm (SnapShot Freeze 2.0, SSF2) to pre-TAVI cardiac CT and investigated its clinical utility by stratified analysis of the patient's heart rate during scanning. We found that SSF2 reconstruction significantly reduced aortic annulus motion artifacts and improved the image quality and measurement accuracy compared to standard reconstruction, especially in patients with high heart rate or a 40% R-R interval (systolic phase). SSF2 may contribute to improving the measurement accuracy of the aortic annulus.
Organ-based tube current modulation (OB-TCM) techniques, which are provided by three vendors, reduces the radiation dose to the lens of the eyes by decreasing the tube current, when the X-ray tube passes over the anterior surface of critical organs. However, the characteristics of dose modulation of these techniques are different. The purpose of this study was to understand the performance characteristics of OB-TCM technique of each computed tomography (CT) vendor at head CT. Methods: We used three CT scanners (SOMATOM Definition Flash; Siemens Healthcare, Revolution CT; GE Healthcare, and Aquilion ONE Genesis Edition; Canon Medical Systems). We measured the radiation dose to the lens surface as evaluation of radiation dose reduction and measured the image noise as index of image quality. We measured the radiation dose rate in the air for analysis of the characteristics of dose modulation in each OB-TCM. Results: When applying OB-TCM, the radiation doses for the lens surface were decreased by 28%, 22%, and 25% for Siemens, GE, and Canon CT scanners, respectively, and the image noise level was increased by 5.6%, 8.5%, and 15.1% for Siemens, GE, and Canon CT scanners, respectively. The characteristics of dose modulation in each OB-TCM were also confirmed by measured the radiation dose rate. Conclusion: We confirmed that each OB-TCM has different influence on image quality and radiation doses for lens surface, due to the different characteristics of dose modulation for each CT vendor.
ObjectiveUsing a chest phantom, we compared the image quality of ultra-high-resolution computed tomography (U-HRCT) images acquired in super high–resolution (SHR) and normal resolution (NR) mode and at the routine radiation dose. The detector size was 0.25 and 0.5 mm, respectively.MethodsA chest phantom was scanned on a U-HRCT scanner. The scan parameters were tube voltage 120 kV and volume CT dose index 13.0 mGy, the routine radiation dose for conventional scans. The rotation time was 0.5 s/rot, the number of matrices was 512 in NR and 1024 in SHR mode. For physical evaluation, the modulation transfer function was measured on the spherical simulated nodule, and the noise power spectrum on the cylindrical water phantom. A CT value profile curve was created using an in-house simulated bronchial phantom. For visual evaluation, 3 radiologists and 3 radiology technologists evaluated overall image quality using a 4-grade scale (grade 1, poor; and grade 4, excellent).ResultsThe 10% of modulation transfer function was 13.5 lp/cm in NR and 14.9 lp/cm in SHR mode (P<0.01). ƒpeak was 5.6 lp/cm in NR and 8.8 lp/cm in SHR mode (P<0.01), and the peak of noise power spectrum shifted. On the profile curves, the CT value at the edge changed in NR but not in SHR mode. The overall image quality was grade 3.0 ± 0.7 in SHR and grade 2.0 ± 0.7 in NR mode (P<0.01).ConclusionsThe image quality of SHR mode with U-HRCT was superior to that of NR mode at the routine radiation dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.